High Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae by Children Admitted to the Pediatric University Hospital Complex in Bangui, Central African Republic
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Data
2.2. Escherichia coli and Klebsiella pneumonia Predominated in Fecal Carriage in Hospitalized Children from Bangui
2.3. Fecal Carriage of Multidrug-Resistant and ESBL-Producing Enterobacteriaceae in Hospitalized Children
3. Discussion
4. Materials and Methods
4.1. Type and Population of Study, and Data Collection
4.2. Specimen Collection, Bacterial Isolation and Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2016, 20, 1–16. [Google Scholar]
- Rodi, P.; Obermeyer, W.; Pablos-Mendez, A.; Gori, A.; Raviglione, M.C. Political rationale, aims, and outcomes of health-related high-level meetings and special sessions at the UN General Assembly: A policy research observational study. PLoS Med. 2022, 19, e1003873. [Google Scholar] [CrossRef] [PubMed]
- Jayatilleke, K. Challenges in Implementing Surveillance Tools of High-Income Countries (HICs) in Low Middle Income Countries (LMICs). Curr. Treat Options Infect. Dis. 2020, 12, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, B.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Kolar, B.; et al. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2015, 13, 4006. [Google Scholar] [CrossRef]
- Ashley, E.; Recht, J.; Chua, A.; Dance, D.; Dhorda, M.; Thomas, N.V.; Ranganathan, N.; Turner, P.; Guerin, P.J.; White, N.J.; et al. An inventory of supranational antimicrobial resistance surveillance networks involving low- and middle-income countries since 2000. J. Antimicrob. Chemother. 2018, 73, 1737–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial resistance in Africa: A systematic review. BMC Infect. Dis. 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Bradfor, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippon, A.; Slama, P.; Dény, P.; Labia, R. A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin. Microbiol. Rev. 2016, 29, 29–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.U.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. Biomed. Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef] [PubMed]
- Sirot, D. Extended-spectrum plasmid-mediated beta-lactamases. J. Antimicrob. Chemother. 1995, 36 (Suppl. SA), 19–34. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Bradford, P.A. Epidemiology of -Lactamase-Producing Pathogens. Clin. Microb. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, Y.M.; Sabiiti, W.; Alamneh, E.; Bezabih, A.; Peterson, G.M.; Bezabhe, W.M.; Roujeinikova, A. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J. Antimicrob. Chemother. 2021, 76, 22–29. [Google Scholar] [CrossRef]
- Brolund, A.; Sandegren, L. Characterization of ESBL disseminating plasmids. Infect. Dis. 2016, 48, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Puspandari, N.; Sunarno, S.; Febrianti, T.; Febriyana, D.; Saraswati, R.D.; Rooslamiati, I.; Amalia, N.; Nursofiah, S.; Hartoyo, Y.; Herna, H.; et al. Extended Spectrum Beta-Lactamase-Producing Escherichia Coli Surveillance in the Human, Food Chain, and Environment Sectors: Tricycle Project (Pilot) in Indonesia; One Heal: Amsterdam, The Netherlands, 2021; p. 13. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, K.; Kering, K.; Wairimu, C.; Onsare, R.; Mbae, C. Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now? Infect. Drug Resist 2022, 15, 3589–3609. [Google Scholar] [CrossRef] [PubMed]
- Huynh, B.-T.; Padget, M.; Garin, B.; Herindrainy, P.; Kermorvant-Duchemin, E.; Watier, L.; Guillemot, D.; Delarocque-Astagneau, E. Burden of bacterial resistance among neonatal infections in low income countries: How convincing is the epidemiological evidence? BMC Infect. Dis. 2015, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, K.; Juliano, J.J.; van Duin, D. Antimicrobial Resistance in Enterobacterales and Its Contribution to Sepsis in Sub-saharan Africa. Front. Med. 2021, 8, 615649. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist 2014, 7, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Huynh, B.-T.; Passet, V.; Rakotondrasoa, A.; Diallo, T.; Kerleguer, A.; Hennart, M.; De Lauzanne, A.; Herindrainy, P.; Seck, A.; Bercion, R.; et al. Klebsiella pneumoniae carriage in low-income countries: Antimicrobial resistance, genomic diversity and risk factors. Gut Microbes 2020, 11, 1287–1299. [Google Scholar] [CrossRef] [PubMed]
- Farra, A.; Frank, T.; Tondeur, L.; Bata, P.; Gody, J.; Onambele, M.; Rafaï, C.; Vray, M.; Breurec, S. High rate of faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy children in Bangui, Central African Republic. Clin. Microbiol. Infect. 2016, 22, e1–e891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bercion, R.; Mossoro-Kpinde, D.; Manirakiza, A.; Le Faou, A. Increasing prevalence of antimicrobial resistance among Enterobacteriaceae uropathogens in Bangui, Central African Republic. J. Infect. Dev. Ctries 2009, 3, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Sanke-Waîgana, H.; Mbecko, J.-R.; Ngaya, G.; Manirakiza, A.; Alain, B.-A. 2003–2019: Explosive spread of enterobacteria producing extended-spectrum beta-lactamases in Bangui Central African Republic. Pan Afr. Med. J. 2021, 39, 22. [Google Scholar] [CrossRef]
- Janatova, M.; Albrechtova, K.; Petrzelkova, K.J.; Dolejska, M.; Papousek, I.; Masarikova, M.; Cizek, A.; Todd, A.; Shutt, K.; Kalousova, B.; et al. Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Vet. Microbiol. 2014, 171, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
Diagnostic | Age Group (Months) | |||||
---|---|---|---|---|---|---|
0–12 | 13–24 | 25–36 | 37–48 | 49–60 | Total | |
Malaria | 69 | 21 | 17 | 17 | 31 | 155 |
Respiratory diseases | 40 | 4 | 1 | 2 | 13 | 60 |
Gastric diseases | 20 | 2 | 1 | 2 | 3 | 28 |
Anemia | 10 | 5 | 7 | 2 | 4 | 28 |
Other diseases | 6 | 1 | 0 | 0 | 0 | 7 |
Total | 145 | 33 | 26 | 23 | 51 | 278 |
Diagnostic | Ec | Kp | Kor | Kox | Ck | Ea | Es | Ec + Kp | Ec + Kor | Ec + Kox | Ec + Ck | None | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Malaria | 83 | 24 | 5 | 3 | 1 | 0 | 1 | 5 | 5 | 1 | 1 | 26 | 155 |
Resp. | 22 | 16 | 0 | 1 | 0 | 0 | 0 | 9 | 2 | 1 | 0 | 9 | 60 |
Gastric | 20 | 1 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 28 |
Anemia | 17 | 2 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 5 | 28 |
Others | 5 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
Total | 147 | 44 | 9 | 5 | 1 | 1 | 1 | 19 | 7 | 2 | 1 | 41 | 278 |
No-ESBL | 1-ESBL | 2-ESBL | Total | |
---|---|---|---|---|
Mono-carriage | 39 | 169 | NA | 208 |
Bi-carriage | 0 | 0 | 29 | 29 |
Total | 39 | 169 | 29 | 237 |
Phenotype | Number and Percentage of Isolates Displaying the Shown Phenotype | |||||||
---|---|---|---|---|---|---|---|---|
All | Ec | Kp | Kor | Kox | Ck | Ea | Es | |
MDR | 238/266 (89.5%) | 152/176 (86.4%) | 61/63 (96.8%) | 16/16 (100%) | 6/7 (85.7%) | ½ (50%) | 1/1 (100%) | 1/1 (100%) |
ESBL | 227/266 (85.3%) | 143/176 (81.3%) | 60/63 (95.2%) | 15/16 (93.8%) | 5/7 (71.4%) | 2/2 (100%) | 1/1 (100%) | 1/1 (100%) |
Antibiotics | ESBL * | Non-ESBL * |
---|---|---|
Ampicillin | 227 (100%) | 39 (100%) |
Ampicillin + Clavulanic acid | 107/227 (47.1%) | 0 |
Ticarcillin | 227 (100%) | 34/39 (87.2%) |
Cephalexin | 227 (100%) | 0 |
Cefoxitin | 53/227 (23.3%) | 0 |
Cefotaxime | 227/227 (100%) | 0 |
Ceftazidime | 226/227 (99.6%) | 0 |
Ceftriazone | 227 (100%) | 0 |
Cefepime | 227 (100%) | 0 |
Netilmicin | 106/227 (46.7%) | 1/39 (2.6%) |
Tobramycin | 169/227 (74.4%) | 2/39 (5.1%) |
Gentamicin | 160/227 (70.5%) | 2/39 (5.1%) |
Nalidixic acid | 209/227 (92.1%) | 28/39 (71.8%) |
Ciprofloxacin | 206/227 (90.7%) | 12/39 (30.8%) |
Chloramphenicol | 163/227 (71.8%) | 20/39 (51.3%) |
Phenotype | Ec | Kp | Kor | Kox | Ck | Ea | Es |
---|---|---|---|---|---|---|---|
EBSL + | 67/143 (46.9%) | 27/60 (45%) | 10/15 (66.7%) | 1/5 (20%) | 0/2 | 1/1 | 1/1 |
ESBL − | 0/33 | 0/3 | 0/1 | 0/2 | None | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanke-Waïgana, H.; Fall, C.; Gody, J.-C.; Komba, E.K.; Ngaya, G.; Mbecko, J.-R.; Yambiyo, B.M.; Manirakiza, A.; Vernet, G.; Dieye, A.; et al. High Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae by Children Admitted to the Pediatric University Hospital Complex in Bangui, Central African Republic. Bacteria 2023, 2, 60-69. https://doi.org/10.3390/bacteria2010005
Sanke-Waïgana H, Fall C, Gody J-C, Komba EK, Ngaya G, Mbecko J-R, Yambiyo BM, Manirakiza A, Vernet G, Dieye A, et al. High Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae by Children Admitted to the Pediatric University Hospital Complex in Bangui, Central African Republic. Bacteria. 2023; 2(1):60-69. https://doi.org/10.3390/bacteria2010005
Chicago/Turabian StyleSanke-Waïgana, Hugues, Cheikh Fall, Jean-Chrysostome Gody, Eliot Kosh Komba, Gilles Ngaya, Jean-Robert Mbecko, Brice Martial Yambiyo, Alexandre Manirakiza, Guy Vernet, Alioune Dieye, and et al. 2023. "High Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae by Children Admitted to the Pediatric University Hospital Complex in Bangui, Central African Republic" Bacteria 2, no. 1: 60-69. https://doi.org/10.3390/bacteria2010005
APA StyleSanke-Waïgana, H., Fall, C., Gody, J. -C., Komba, E. K., Ngaya, G., Mbecko, J. -R., Yambiyo, B. M., Manirakiza, A., Vernet, G., Dieye, A., & Dieye, Y. (2023). High Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae by Children Admitted to the Pediatric University Hospital Complex in Bangui, Central African Republic. Bacteria, 2(1), 60-69. https://doi.org/10.3390/bacteria2010005