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Abstract: In the field of computer vision, active vision systems based on Artificial General Intelligence
have shown stronger adaptability compared to passive vision systems based on Special-purpose
Artificial Intelligence when dealing with complex and general scenarios. The development of visual
capabilities in intelligent agents follows stages similar to human infants, gradually progressing over
time. It is also important to set appropriate goal systems for educational guidance. This paper
presents preliminary research on the developmental overview of visual depth perception abilities
using OpenNARS, an Artificial General Intelligence system equipped with visual perception and
motion channels. This study reveals that the development of visual abilities is not based on a
mathematical algorithm but rather an educational guidance of embodied experiences construction.
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1. Introduction

In recent years, computer vision (CV) has made great progress thanks to the rapid
development of deep learning in object recognition and image segmentation. However,
such passive vision models are trained using Special-purpose Artificial Intelligence (SAI),
which cannot escape from the intrinsic limitations of SAI, such as poor contextual under-
standing, lack of adaptability due to its offline experiences, and lack of flexible attention in
a rigid target system. In contrast, active vision has emphasized the active nature of visual
behavior from the beginning, and related work has made some progress. Unfortunately,
the subjectivity and autonomy of active vision systems are still lacking, and active vision
models are still essentially deformations of SAI systems. In this paper, we explore the
developmental approaches of active vision based on sensation and motion and investigate
the potential association between visual ability and subject experience, with an Artificial
General Intelligence (AGI) system as the agent, under an active perspective, to adapt to its
environment autonomously.

2. Active Vision Overview
2.1. Bionic Perspectives

From the bionic perspective, active vision is closely related to the complexity of a
creature’s visual ability. Frogs have relatively simple visual neural pathways, and the
frog visual system is a common biological model. Although computer simulations of frog
visual systems can be performed, the simulated system is hardly capable of handling the
demands of complex visual tasks. Studies of higher organisms such as cats, rats, and
humans, however, have struggled to achieve comprehensive and accurate simulations
due to the complexity of the neural pathways. Such systems are mostly specialized vision
systems that incorporate the biological properties of the eye. Although they can be used in
different scenarios, their actual effectiveness is usually moderate.
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2.2. Computational Perspectives

In the computational model of active vision, deep reinforcement learning serves as the
core technical framework of the model and undertakes important tasks such as prediction as
well as recognition. Traditional 3D reconstruction techniques that were used in the past are
gradually being replaced by SLAM (Simultaneous Localization and Mapping) techniques
incorporating deep learning and point clouds [1]. While these active vision systems show
impressive performance, they often lack interpretability and have lower credibility.

2.3. Developmental Perspectives

Researchers who advocate for a developmental perspective argue that computers are
essentially blank slates and should learn through development and evolution, with the
fusion of sensation and action being key [2]. Instead of solely relying on explicit visual
representations for computation, it is more beneficial to enhance the system’s inherent
ability for perceptual-motion coordination. As active vision has evolved, it has become in-
creasingly important to study the visual developmental issues in environmental adaptation,
focusing on active agents equipped with visual sensors that can learn and grow [2,3].

3. Development of AGI Active Vision

For the visual agent, there is no theoretical difference between the visual nature of 2D
and 3D environments. Therefore, in this study, we used the AGI system OpenNARS as the
agent and developed a 2D grid-based virtual survival environment (as shown in Figure 1).
In this virtual environment, OpenNARS can receive signals of different utilities from the
environment and can also issue motion control commands to actively modify sensory
signals. When the OpenNARS system is initially started, it does not have any pre-existing
innate visual experiences. Through appropriate postnatal educational guidance, OpenNARS
is aided in developing experiential concepts related to vision based on perceptual-motion
foundations, gradually improving the system’s visual capabilities [4,5].
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Figure 1. This figure shows the virtual enviroment of training Active Vision of AGI system. Note
that the “red triangle” is controlled by OpenNARS, “blue squares” are positive stimuli and “cyan
squares” are negative stimuli.

The visible region received by OpenNARS spans three grid units in front of it, then
five grid units in the further row, and so on. Since visual processing does not generate from
a “God’s perspective” but rather from a one-dimensional “Subjective perspective”, placing
objects at different distances can be used to test NARS’s visual depth perception. This study
emphasizes that, similar to the visual development of human infants, the active visual
development of AGI systems also goes through multiple stages, such as “stationary agent,
solid object moving back and forth”, “agent moving back and forth, solid object stationary
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or moving”, and “stationary agent, multicolored multiple objects occluding from the left
and right”. Experimental results show that the system’s visual depth perception improves
as the number of concept network nodes increases. The slow progress in the maturity
of visual depth perception due to innate target settings significantly affects the system,
demonstrating the unity of active vision’s embodiment, constructiveness, and autonomy.

3.1. Visual Depth Perception of the “Object-Moving & Agent-Not Moving”

This is the first stage of visual depth development, characterized by a stationary agent
and a solid object moving back and forth. As shown in Figure 2a, the intelligent agent
remains in a fixed position in the environment, while the position of the block-shaped
object changes either by moving left and right or moving forward and backward. As a
result, the visual imaging of the object perceived by the intelligent agent varies in size due
to the movement of the object. The intelligent agent learns to judge the distance between
the object and itself based on these visual cues.
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Figure 2. This figure shows the four stages of the development of Active Vision. (a) Scenario with
active object with stationary agent; (b) active agent with stationary object; (c) left or right shading;
(d) front or back shading.

3.2. Visual Depth Perception of the “Agent-Moving & Object-Not Moving”

This is the second stage of visual depth perception development, characterized by a
stationary and monochromatic object and an agent moving back and forth. As shown in
Figure 2b, the intelligent agent can move freely in the environment while the position of
the blocking object remains fixed. Therefore, the visual presentation of the object to the
intelligent agent changes in size according to the distance between the agent itself and the
object. The intelligent agent learns to judge the distance between the object and itself from
these variations.

3.3. Visual Depth Perception with Left or Right Shading

This is the third stage of visual depth perception development, characterized by a
stationary agent and the presence of two multicolored objects that occlude each other from
the left and right sides. As shown in Figure 2c, the intelligent agent is not able to move
freely, while the objects form an occlusion relationship. The agent itself needs to learn to
judge the depth perception in this scenario.
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3.4. Visual Depth Perception with Front or Back Shading

This is the fourth stage of visual depth perception development, characterized by an
agent’s movement and the presence of two multicolored objects that occlude each other
from the front and back. As shown in Figure 2d, the intelligent agent can move freely
from left to right, while the object will form different angles of occlusion due to the agent’s
movement. The agent needs to learn to judge the depth perception in this scenario on
its own.

4. Prospects

For diversiform cognitive systems, such as human or OpenNARS, they can “see” in
a same way theoretically behind the different physical compositions. This experiment
primarily focuses on the study of the active visual depth comprehension of intelligent
agents and does not comprehensively explore the capability of active vision. The develop-
mental patterns of visual elements, such as color and shape, will be gradually explored in
subsequent studies.
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