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Abstract: Factor implicit thought in factor space theory can be used to solve the classification problem
of machine learning. On the basis of factor implicitness, a serial sweeping class classification algorithm
is proposed, and a factor implicit model is constructed with this algorithm, and then tested and
classified. On the basis of a serial scanning algorithm, this paper proposes a fine-tuning Sweeping
Learning Algorithm, an ascending Side-By-Side Serial Scanning Algorithm, and a combination
algorithm to solve the two problems in the running of the serial scanning algorithm. In order to solve
the problem that the training speed of a traditional serial scanning algorithm is too slow due to the
large amount of data, a new method which can select mixed domains in advance—the partial-side
serial scanning algorithm.

Keywords: factor space; factor implicit; serial scanning algorithm; support vector machine; side-by-side
serial scanning algorithm; support vector machine based on sweeping class chain algorithm; factor
support vector machine

1. Introduction

As the core of artificial intelligence, machine learning plays a very important role in
the realization of computer intelligence. With the continuous innovation of science and
technology and the rapid development of computer network technology, machine learning
has become an increasingly important part of the field of artificial intelligence, and the
classification problem in machine learning is also one of the main tasks of machine learning,
which is widely used in various fields of real life, and the accuracy rate of the goals it
can achieve is getting higher and higher. Among them, the binary classification problem
is also an important part of machine learning; whether it is medical, agriculture or daily
production and life, the problem of binary classification is everywhere. Looking for a
more accurate algorithm to solve the binary classification problem is an important research
direction in the field of artificial intelligence.

The advent of the information revolution and the era of big data promoted the de-
velopment of artificial intelligence, followed by the need to find how to save, extract, and
process the required factor data for huge data. Causal analysis between factors provides
an important tool for artificial intelligence, data mining, etc. However, the main difficulty
in the field of artificial intelligence is that the key factors to solve practical problems have
not been revealed, and how to find the key factors has become an important research
direction. Factor explicitness is a new theory under the factor space theory proposed by
Wang Peizhuang [1]. As a bottleneck problem in the field of artificial intelligence, factor
explicitness has great significance in helping artificial intelligence problems find the key
factors. As long as the key factors are found, the corresponding problems will naturally be
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solved. Sun Hui et al. [2] proposed a serial sweep algorithm. Aiming at the classification
problem of machine learning, the algorithm defines the sweeping direction and the explicit
and implicit factors by using the factor space theory. In order to reduce algorithm’s com-
plexity, the ordered set of swept class vectors is defined, and the factor implicit model is
constructed. The results of numerical experiments show that the algorithm is feasible and
effective. Zeng Fanhui et al. [3] proposed the application of the serial scanning algorithm
in multi-classification. On the basis of this algorithm, this paper proposes a fine-tuning
sweeping learning algorithm, a dimension-raising side-by-side serial scanning algorithm,
and a combination algorithm [4] to solve the two problems in the operation of the serial
sweep classification algorithm.

2. Sweeping Learning Algorithm

(1) Algorithm steps:

Algorithm steps:

1: input S−: = {x1
−, . . ., xI

−}; S+: = {x1
+, . . ., xJ

+};
2: w: = o+ − o−;
3: l: = max{(xI

−, w)}; u: = min{(xi
+, w)}; r: = (u − l)/2; o: = (u + l)/2;

4: if l < u, then go to Step 3; otherwise:
S−: = S− − {xI

− ∈ S−|(xI
−, w) < u};

S+: = S+ − {xj
+ ∈ S+|(xj

+, w) > l};
go back 2.

5: for each deleted xI
− from S−, if l < (xI

−, w) < u, then S−: = S− + {xI
−};

for each deleted xj
+ from S+, if l < (xj

+, w) < u, then S+: = S+ + {xj
+}.

go back 2.
6: if x is all deleted from S− + S+, (x, w) never enter into (l, u); then, output w, which can divide

two classes’ points.

(2) Fine-tuning algorithm step

Fine-tuning algorithm step

1: calculate the sum of two types of centers u−t and u+
t and obtain wt;

2: take any integer t = [0, T); it is best to select the serial classification algorithm before sweeping
into infinite iteration; then, adjust the displacement of the remaining positive and negative mixed
points class X+

t+1, X−t+1 to fine-tune the positive and negative class data set.
3: use linear discriminant analysis (LDA) to solve w*, wt+1 = w*.
4: starting from t = t + 1, calculate solve, stop, and output the explicit and implicit factors by using

the scanning serial classification algorithm.

(3) Steps of dimension-raising algorithm

Steps of dimension-raising algorithm

1: calculate the sum of two types of centers u−t and u+
t and obtain wt;

2: Take any integer t = [0, T); it is best to select the serial classification algorithm before sweeping
into infinite iteration; then, adjust the displacement of the remaining positive and negative mixed
points class X+

t+1, X−t+1 to fine-tune the positive and negative class data set.
3: use the kernel function to raise the dimension of the fine-tuned positive and negative data set,

and use the corresponding formula to perform projection calculation.
4: Starting from t = t + 1, calculate, solve, stop, and output the explicit and implicit factors using

the sequential classification algorithm of sweeping classes.

(4) Example application

The data of Sweeping Learning Algorithm are derived from the Cryotherapy data
set, Immunotherapy data set and Somerville Happiness in the UCI database based on the
survey data set; Matlab software is used to show that the serial scanning algorithm has a
better classification effect compared with a support vector machine, and the experimental
results also show the feasibility and practicability of the serial scanning algorithm. The
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experimental results, such as related data set physical properties and experimental results,
are shown in Tables 1–4.

Table 1. Attributes for the two data sets.

Data Set Sample Number Number of
Categories

Characteristic
Number

Cryotherapy 90 2 6

Immunotherapy 90 2 7

The Somerville
Happiness Survey 143 2 6

Table 2. Performance comparison of Cryotherapy data sample set.

Contrast Term Number of Training Steps Number of Samples Accuracy %

SVM 74 9 100%

sweep 74 9 100%

Table 3. Performance comparison of Immunotherapy data sample set.

Contrast Term Number of Training Steps Number of Samples Accuracy %

SVM 80 10 90%

sweep 80 10 90%

Table 4. Performance comparison of the Somerville Happiness Survey data sample set.

Contrast Term Number of Training Steps Number of Samples Accuracy %

SVM 133 10 70%

Sweep 133 10 100%

3. Side-By-Side Serial Scanning Algorithm

(1) Algorithm steps:

Algorithm steps:

1: input S−: = {x1
−, . . ., xI

−}; S+: = {x1
+, . . ., xJ

+};
2: w: = o+ − o−; l: = max {(xI

−, w)}; u: = min {(xi
+, w)}; r: = (u − l)/2; o: = (u + l)/2;

3: if l < o < u, then goto 4; Else
S−: = S− − {xI

− ∈ S−|(xI
−, w) < u};

S+: = S+ − {xj
+ ∈ S+|(xj

+, w) > l};
go back 2.

4: for each deleted xI
− from S−, if l < (xI

−, w) < u, then S−: = S− + {xI
−};

for each deleted xj
+ from S+, if l < (xj

+, w) < u, then S+: = S+ + {xj
+};

go back 2.
5: if x is all deleted from S− + S+, (x, w) never enter into (l, u); then, output w, which can divide

two classes’ points.

Attachment: In the process of program calculation, the size of the sample centers of
the positive and negative class data will change in actual situations, so it is difficult to
maintain the positive class center above the negative class center; thus, it is necessary to
consider the position transformation of the two types of centers. When it appears below,
the calculation method of class vector scanning is: wt = −o+t + o−t .
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(2) Example application:

Using the data sets of Iris and Haberman’s Survival UCI, SVM, sweep, s-sweep, and
matlab2018a coding were used for multiple experimental comparisons. In the experimental
process, 80% of the data sets were randomly selected for testing and the remaining 20%
were verified. The corresponding attributes of the six data sets shown in Tables 5 and 6 are
the average values of multiple experimental results.

Table 5. Attributes for the two data sets.

Data Set Sample Number Number of Categories Characteristic Number

Iris 150 3 4

Haberman’s Survival 306 2 3

Table 6. Performance comparison on Iris data sample set.

Contrast Term Number of
Training Steps

Number of
Samples

Training
Time/ms Accuracy %

SVM 100 50 259.156 96.5%

sweep 100 50 7.369 100%

s-sweep 100 50 1.987 100%

4. Summary and Prospects

This paper solves two problems in the operation of a serial class scanning algorithm
and puts forward corresponding processing methods. By contacting the vertical bisector of
the class scanning vector, the sample points are retained according to the distance between
the projection distance of the sample points in the class scanning vector and the vertical
bisector, and a new training sample is obtained. New training samples are used to replace
original training samples for traditional serial scanning training, as shown in Table 6. This
algorithm can reduce the training samples without affecting the classification ability of
the class scanning vector and speed up the data-processing process. Meanwhile, when
the positive class center is smaller than the negative class center in the process of class
scanning, the influence of the obtained class scanning vector on the data prediction and
classification is also a problem. At the same time, the simulation results show that the
algorithm is effective and feasible, and it has faster data-processing ability and accuracy
than a traditional SVM algorithm and serial scanning algorithm.
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