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Abstract: This work introduces a straightforward framework for semiparametric non-linear models
as an alternative to existing non-linear parametric models, whose interpretation primarily depends on
biological or physical aspects that are not always available in every practical situation. The proposed
methodology does not require intensive numerical methods to obtain estimates in non-linear contexts,
which is attractive as such algorithms’ convergence strongly depends on assigning good initial values.
Moreover, the proposed structure can be compared with standard polynomial approximations
often used for explaining non-linear data behaviors. Approximate posterior inferences for the
semiparametric model parameters were obtained from a fully Bayesian approach based on the
Metropolis-within-Gibbs algorithm. The proposed structures were considered to analyze artificial
and real datasets. Our results indicated that the semiparametric models outperform linear polynomial
regression approximations to predict the behavior of response variables in non-linear settings.

Keywords: Bayesian inference; non-linear data; non-linear regression modeling; polynomial models;
semiparametric models

1. Introduction

Non-linear models are often applied in many areas of quantitative research, such as
biology, chemistry, epidemiology, and physics, among many others. These models have
appeal in these areas as they have straightforward interpretability (regarding the nature
of the underlying process) and typically provide excellent predictions for the response
variable [1]. Alternatively to non-linear parametric models, researchers may consider
approximating unknown non-linear functions using linear polynomial models. However,
adopting such linear approximations to describe non-linear behaviors may be cumbersome
as it could involve estimating more (and not easily interpretable) parameters [2]. On the
other hand, non-linear models’ are sensitive and should be carefully chosen depending on
the application, and their parameters generally do not have analytical forms for their estima-
tors. The absence of analytical solutions implies the need for numerical algorithms whose
convergence strongly depends on the initial values chosen for the iterative procedures.

Several proposals for non-linear models can be found in the literature. However,
modern techniques can also be used for non-linear modeling and predictions, such as
nonparametric regression based on spline smoothing [3–5] and Generalized Additive
Models (GAMs) [6,7]. In the context of agricultural applications, ref. [8] classifies non-linear
models into six groups, as detailed in Table 1. Moreover, ref. [9] provides an excellent review
on Gaussian Processes (GPs) and Relevance Vector Machines (RVMs), discussing how those
nonparametric methods can be applied in non-linear frameworks for regressing over large
datasets and how they can be effective for dealing with sequential data. The primary
advantage of RVMs is that one can choose more general basis functions, and GPs present
excellent behavior for predicting variances, although more restrictive regarding the kernel
function choice. Ref. [10] has also studied such methods and concluded that the difficulty
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of GPs is learning by maximizing the evidence, where the hyperparameters could be
learned, which is distinct from RVMs with fixed basis functions where inputs are the
learning targets.

Table 1. Groups of non-linear models in agricultural applications.

Group Models Published Works

I Exponential Functions [11,12]

II Sigmoids (e.g., Logistic Function) [13–17]

III
Asymptotic Exponential

[18,19]Modified Logistic
Photosynthesis

IV
Modified Arrhenius

[20–23]Temperature Dependencies
va not (Q10 Function)

V Bell-shaped Curves [24]Gaussian Function

VI

Michaelis–Menten

[8,25–28]
Modified Hyperbola

Power Functions
Rational Functions

Ricker Curve

In the presented context, this work aims to introduce a semiparametric non-linear
regression model framework that can be very useful for obtaining highly accurate fits to
non-linear datasets. Our goal is to provide an alternative to the existing linear approxi-
mations and nonparametric models. The proposed approach does not require numerical
methods that strongly depend on precise initial values to reach convergence. By adopt-
ing the proposed framework, one could derive accurate inferences and predictions un-
der a fully Bayesian approach [29] using standard MCMC (Markov Chain Monte Carlo)
methods [30–32] (e.g., Gibbs Sampling, Metropolis–Hastings, and Metropolis-within-Gibbs
(MwG), among others). In this paper, we have chosen to work with the MwG algo-
rithm [33] to draw pseudo-random samples from the approximate posterior distribution of
model parameters.

This paper is organized as follows. In Section 2, we present fundamental concepts
regarding the formulation and estimation of parametric non-linear regression models.
In Section 3, we analyze and discuss the results obtained using the proposed methodology
for modeling artificial and real datasets featuring non-linear relationships. Model compar-
isons regarding linear polynomial approximations are also presented. General comments
and concluding remarks are addressed in Section 4.

2. Materials and Methods

Non-linear models are similar to linear regressions [34] in the sense of outlining the
functional relationship between a continuous response variable Y and a set of covariates, thus
providing a statistical prediction tool. Linear regressions are used to build purely empirical
models, while non-linear models are typically applied when biological or physical interpre-
tations imply relationships between responses and covariates that are not linear [35,36]. It is
important to establish that either linearity or non-linearity is related to the unknown param-
eters and not the response–covariates relationship. In this context, a non-linear regression
model for representing a response variable Yi (i = 1, . . . , n) has the general form

Yi = f (zi, α) + εi,
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where f is a known function of the designed covariate zi, and αᵀ = (α1 . . . , αp) is a p-
dimensional vector of non-linear parameters indexing f . Moreover, εi denotes the random
error, which is typically assumed to be normally distributed with zero mean and constant
variance. It is also usual to assume that the errors are uncorrelated, that is, C(εi, εj) = 0 for
all i 6= j.

The most popular method for estimating α is the non-linear least squares, which is
based on minimizing

S(ε) =
n

∑
i=1

ε2
i =

n

∑
i=1

[yi − f (zi, α)]2, (1)

where ε = (ε1, . . . , εn). It is worth mentioning that if εi ∼ N (0, σ2
ε), then the least squares

and maximum likelihood estimators of α are the same.
Typically, point estimates for non-linear regression coefficients are obtained from

iterative optimization processes based on techniques to minimize the error sum of squares.
A widespread iterative method to derive least-squares estimates for non-linear models is
the Gauss–Newton algorithm. In this context, if f (zi, α) in Equation (1) is continuously
differentiable at α, then f can be linearized locally at α0 as

f (zi, α) = f (zi, α0) + Z0(α− α0),

where Z0 is the n× p Jacobian matrix whose elements

∂ f (zi, α)

∂αj

are evaluated at α = α0. Thus, the iterative algorithm to estimate α is given by

α(k+1) = α(k) +
(
Zᵀ

0 Z0
)−1Zᵀ

0 ε,

where α(0) = α0 is the vector of initial values for α, and ε is evaluated at α = α(k). If the
errors are independent and normally distributed, then the Gauss–Newton algorithm is an
application of the Fisher Scoring method.

Implementations of the Gauss–Newton algorithm are available in most of the existing
statistical software, but, in practice, there is no guarantee that the algorithm will converge
from initial values that are far from the solution. In this sense, some improvements for
this method can be found in the literature, such as the Gradient Descent and Levenberg–
Marquart algorithms [36].

After obtaining point estimates for α, one may derive confidence intervals and conduct
hypothesis tests by assuming

α̂
a∼ Np

[
α, σ2

ε(Z
ᵀ
0 Z0)

−1
]
,

where σ2
ε can estimated by

σ̂2
ε =

1
n− p

n

∑
i=1

[yi − f (zi, α̂)]2.

2.1. The Semiparametric Non-Linear Regression Model

Suppose that a random experiment is conducted with n subjects. The primary response
in this setting is described by a random variable Yi denoting the outcome for the i-th subject
(i = 1, . . . , n). The full response vector of the experiment is given by Y = (Y1, . . . , Yn),
and we assume that the behavior of Yi can be partially explained by a non-linear relationship
involving a designed covariate zi through a known function f . Simultaneously, we can
consider that part of the variability of Yi can also be linearly modeled by a k-dimensional
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vector xᵀi = (x1i, . . . , xki) of fixed covariates [37–39]. In this context, we have the non-linear
regression model

Yi = f (zi, α) + xᵀi β + εi, (2)

where βᵀ = (β1, . . . , βk) is a k-dimensional vector of regression coefficients related to xi,
and εi is the random error of the i-th observation. Here, we assume that the errors are
uncorrelated and normally distribution with zero mean and constant variance (σ2

ε).
A particular case arising from Equation (2) is the p-order polynomial regression model,

which can be obtained by taking

f (zi, α) = α0 +
p

∑
j=1

αjz
j
i .

In the context of Model (2), let z = (z1, . . . , zn) be the full vector of designed values.
In order to obtain an approximation for f , we assume that z1 6 z2 6 · · · 6 zn, and then we
associate these values to each Yi non-linearly by α. Thus, for each point zi (i = 3, . . . , n),
we take a = zi−1, a + h = zi, and a− h = zi−2 to express the approximation f (zi) to f as

f (zi) = f (zi−1) +
[ f (zi)− f (zi−1)](zi − zi−1)

hi
+

[ f (zi)− 2 f (zi−1) + f (zi−2)](zi − zi−1)
2

2h2
i

,

which is based in a Taylor’s series of the function f (zi) around zi−1. Now, one can notice
that replacing f (zi) with the observed data on the right side of the previous equation leads
to the approximation

f (zi) ≈ yi−1 + g1(zi) + g2(zi),

where

g1(zi) =
(yi − yi−1)(zi − zi−1)

hi
and g2(zi) =

(yi − 2yi−1 + yi−2)(zi − zi−1)
2

2h2
i

,

with hi = zi+1 − zi. Therefore, an alternative for Model (2) is the semiparametric non-linear
regression model given by

Yi = α1Yi−1 + α2g1(zi) + α3g2(zi) + xᵀi β + εi, (3)

which holds for i ∈ {3, . . . , n}.

2.2. Bayesian Inference

In this subsection, we address the problem of estimating and making inferences
from Model (2) under a fully Bayesian perspective. Firstly, the log-likelihood of vector
θ = (α, β, ζ) can be written as

`(θ; y, x, z) ∝
n
2

log(ζ)− ζ

2

n

∑
i=1

[
yi − f (zi, α)− xᵀi β

]2,

where ζ = σ−2
ε is the precision parameter.

For the p-order polynomial model, we have α = (α0, α1, . . . , αp) and, specifically for
the semiparametric non-linear regression model, we have α = (α1, α2, α3). In either case,
the log-likelihood function of θ can be expressed by

`(θ; y, x, z) ∝
n
2

log(ζ)− ζ

2

n

∑
i=3

[
yi − α1yi−1 − α2g1(zi)− α3g2(zi)− xᵀi β

]2.

In this work, we have adopted weakly informative Normal prior distributions for the
vectors α and β, that is
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α ∼ Nq
(
0, 1q

)
and β ∼ Nk(0, 1k),

where 1q and 1k are identity matrices of sizes q and k, respectively. For the p-order poly-
nomial model, we have that q = p + 1. As for parameter ζ, we have adopted a Gamma
prior distribution with both hyperparameters equal to 0.01. We further assume prior
independence among all parameters.

Now, we can express the posterior distribution of θ as

π(θ; y, x, z) ∝ exp{`(θ; y, x, z) + log[π(α)] + log[π(β)] + log[π(ζ)]}. (4)

From the Bayesian point of view, inferences for the elements of θ can be derived
from their marginal posterior distribution. Here, we have opted to use a suitable itera-
tive procedure to draw pseudo-random samples from the approximate posterior density
(Equation (4)) in order to make inferences for θ. Thus, in order to generate N pseudo-
random values for each element of θ, we have adopted the MwG algorithm.

The simulated sequences’ convergence can be monitored using trace, autocorrelation
plots, and statistical tests (e.g., Heidelberger and Welch [40] and Geweke [41]). After diag-
nosing convergence, some samples can be discarded as burn-in. The strategy to decrease the
correlation between generated values is based on getting thinned steps, and so the final sam-
ple is supposed to have size B� N. After that, a descriptive summary of Equation (4) can
be obtained through approximate Monte Carlo estimators using the generated chains. We
choose the posterior expected value as the Bayesian point estimator for the elements of θ.

The next section illustrates the usefulness of the proposed semiparametric non-linear
regression model using artificial and real datasets. All computations were performed using
the R2jags package, which is available in the R environment [42]. The executable scripts
can be made available by the authors upon justified request.

2.3. Model Comparison

There are many methods for Bayesian model selection that are useful for comparing
competing models. The most popular method is the Deviance Information Criterion (DIC),
which works simultaneously to measure the model’s fit and complexity. The DIC criterion
is defined as

DIC = Eθ[D(θ)] + pD = D(θ) + pD ,

where D(θ) = −2`(θ; y, x, z) is the deviance function, and pD = D(θ)−D(θ̂) is the effective
number of model parameters, where θ̂ is the posterior expected value.

Noticeably, we are not able to compute the expectation of D(θ) over θ analytically.
Therefore, an approximate Monte Carlo estimator for such a measure is

D̂(θ) = − 2
B

B

∑
i=1

`(θi; y, x, z),

and so the DIC can be estimated by

D̂IC= 2D̂(θ)−D(θ̂).

The Expected Akaike (EAIC) and the Expected Bayesian (EBIC) information criteria
can also be used when comparing Bayesian models [43,44]. Based on the approximation
for the expected value of D(θ), these measures can be estimated by

ÊAIC = D̂(θ) + 2k and ÊBIC = D̂(θ) + k log(n),

where k = dim(θ).
Another widely used criterion is derived as a posterior measure of goodness-of-fit

based on the observed and predicted values. This measure is given by
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A[m] =
1
n

n

∑
i=1
|yi − µ̂i|, (5)

where µ̂i denotes the estimated mean of Yi, which depends on the adopted model (m).
For instance, under the semiparametric non-linear regression model in Equation (3), we
have that

A[(3)] =
1

n− 2

n

∑
i=3

∣∣∣yi − α̂1yi−1 − α̂2g1(zi)− α̂3g2(zi)− xᵀi β̂
∣∣∣,

since the first two observations are not considered when computing A under the semipara-
metric model in Equation (3).

3. Non-Linear Data Analysis

To illustrate the usefulness of the proposed methodology, we have considered three
datasets and the non-linear models presented in Section 2.1. Using the MwG algorithm,
a total of N = 110,000 pseudo-random values from the approximate posterior distribution
in Equation (4) of θ were obtained. After generating the values, the first 10,000 samples
were discarded (burn-in period). Then, 1 out of every 100 generated values was kept,
resulting in sequences of the size B = 1000 for each element of θ. Finally, trace plots were
used to assess the stationarity of the obtained chains.

3.1. Artificial Data

Let us consider the artificial dataset displayed on Table 2. This dataset has n = 21
observations and is composed of a designed and a fixed covariate. For analyzing these
data, we have adopted the two-order polynomial model

Yi = α0 + α1zi + α2z2
i + xiβ + εi (i = 1, . . . , 21), (6)

and the semiparametric non-linear regression model

Yi = α1Yi−1 + α2g1(zi) + α3g2(zi) + xiβ + εi (i = 3, . . . , 21). (7)

Table 2. Artificial dataset from a hypothetical experiment with 21 subjects.

y x z y x z
12 1 10.0375 31 12 8.9171
14 2 11.4128 29 13 10.0933
15 3 9.8035 27 14 11.9097
18 4 9.9774 25 15 11.0709
20 5 9.0706 20 16 10.3041
21 6 10.8220 19 17 9.4895
22 7 9.6170 18 18 9.1792
25 8 9.1354 16 19 9.5295
28 9 10.0180 15 20 9.2414
30 10 10.1596 10 21 10.3354
34 11 10.3520 - - -

Table 3 presents the posterior parameter estimates and the 95% Credible Intervals (CIs)
based on the fitted models. From the displayed results, one can make some conclusions.
Firstly, one can notice that the CIs of parameter α1 of both models do not contain the
value zero, which constitute z and g1(z) as relevant covariates to explain part of the
response’s variability. The comparison procedure between the fitted models is presented in
Table 4. One can notice that Model (6) has performed poorly compared with the proposed
semiparametric non-linear regression model.
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Table 3. Posterior parameter estimates and 95% credible intervals for the artificial dataset.

Model Parameter Mean Std. Dev.
95% CI

Lower Upper

(6)

α0 1.3780 2.7771 −3.7411 7.0241
α1 3.6490 0.4037 2.8950 4.4070
α2 −0.1659 0.0181 −0.1990 −0.1297
β 0.5975 0.3185 −0.0185 1.2420
ζ 0.1697 0.0592 0.0756 0.3008

(7)

α1 1.0000 0.0029 0.9944 1.0061
α2 0.9990 0.0121 0.9749 1.0230
α3 0.0012 0.0257 −0.0468 0.0518
β −0.0002 0.0064 −0.0131 0.0122
ζ 85.2600 29.6000 39.1100 152.5000

Table 4. Posterior comparison criteria for the fitted models for the artificial dataset.

Model k pD DIC EAIC EBIC

(6) 5 4.826 103.986 109.160 114.382
(7) 5 5.022 59.858 69.413 79.857

Figure 1 illustrates the behavior of the predicted responses against the values of
the designed covariate. When considering the goodness-of-fit measure in Equation (5),
we have that A[(6)] = 1.8061 and A[(7)] = 0.0007, which indicates that the proposed
semiparametric non-linear model has performed better in predicting the response variable.
In order to reassure such a conclusion, these models were refitted considering only the first
20 observations, so we could predict the 21st outcome (y21 = 10). From Model (6), we have
obtained ŷ21 = 11.8 (±2.2), and from the semiparametric non-linear regression model, we
obtained ŷ21 = 10.4 (±3.3), which also suggest a better fit of Model (7).
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Figure 1. Predicted responses vs. designed covariate (z) for the artificial dataset.
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3.2. COVID-19 Count Data

As a second application, we have considered data from n = 358 daily counts of
cases and deaths caused by COVID-19 in Brazil (from 17 March 2020 to 21 March 2021).
For analyzing these data, we have adopted a second-order autoregressive (AR) model with
lagged effects given by

Yi = β0 + β1dayi + β2Yi−1 + β3Yi−2 + εi (i = 1, . . . , 358), (8)

and, for the moving averages (MA) of daily COVID-19 counts (average of last seven days),
we have considered the following semiparametric non-linear model:

Yi = α1Yi−1 + α2g1(daysi) + α3g2(daysi) + εi (i = 1, . . . , 358). (9)

Table 5 presents the posterior parameter estimates and the 95% CIs based on the
fitted models. From the fitted AR(2) model, it can be noticed that the covariate day is not
relevant to describing the incidence behavior of cases and deaths by COVID-19 in the
observed time frame. The comparison procedure between the fitted models is presented in
Table 6. Noticeably, the semiparametric non-linear model outperformed the AR(2) model
in both cases, which can be acknowledged as an excellent result since Model (9) has one
less parameter.

Table 5. Posterior parameter estimates and 95% credible intervals for the COVID-19 dataset.

Count Model Parameter Mean Std. Dev.
95% CI

Lower Upper

Cases

(8)

β0 0.0371 1.0080 −1.8620 1.9800
β1 0.8959 0.7839 −0.6451 2.5610
β2 1.3070 0.0540 1.2100 1.4230
β3 −0.3089 0.0545 −0.4249 −0.2088
ζ <0.0001 <0.0001 <0.0001 <0.0001

(9)

α1 1.0060 0.0021 1.0021 1.0100
α2 −0.1662 0.0222 −0.2113 −0.1265
α3 −5.3710 0.5814 −6.5710 −4.3110
ζ <0.0001 <0.0001 <0.0001 <0.0001

Deaths

(8)

β0 −0.0296 0.9695 −1.9500 1.8390
β1 0.0161 0.0185 −0.0214 0.0556
β2 1.2930 0.0550 1.1940 1.4080
β3 −0.2908 0.0558 −0.4049 −0.1893
ζ 0.0009 <0.0001 <0.0001 <0.0001

(9)

α1 1.0101 0.0018 1.0060 1.0130
α2 −0.1681 0.0221 −0.2136 −0.1287
α3 −5.4050 0.5801 −6.5920 −4.3460
ζ 0.0011 <0.0001 <0.0001 <0.0001

Table 6. Posterior comparison criteria for the fitted models for the COVID-19 dataset.

Count Model k pD DIC EAIC EBIC

Cases (8) 5 3.084 6237.000 6243.637 6263.040
(9) 4 3.186 6194.920 6193.722 6197.602

Deaths (8) 5 4.174 4104.000 4109.994 4129.397
(9) 4 3.945 4057.920 4060.384 4063.967

Figure 2 illustrates the fitted means (moving averages for COVID-19 cases and deaths)
across days. Noticeably, both models provide excellent fits for the COVID-19 counts, with
the semiparametric non-linear model being slightly better than the AR(2) since we have
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A[(8)] = 994.03 against A[(9)] = 934.11 for the number of cases and A[(8)] = 21.59 against
A[(9)] = 20.68 for the number of deaths.
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Figure 2. Fitted means for the daily number of COVID-19 cases (left panel) and deaths (right panel).

3.3. Tuberculosis Count Data

For the last application, we have considered data from n = 216 monthly counts of
tuberculosis cases in Brazil (from January 2001 to December 2018). For analyzing these
data, we have adopted the three-order polynomial regression model:

Yi = α0 + α1zi + α2z2
i + α3z3

i + β yeari + εi (i = 1, . . . , 216), (10)

and the following semiparametric non-linear regression model:

Yi = α1Yi−1 + α2g1(zi) + α3g2(zi) + β(yeari − 2000) + εi (i = 1, . . . , 216). (11)

Table 7 presents the posterior parameter estimates and the 95% Credible Intervals (CIs)
based on the fitted models. From the displayed results, one can make some conclusions.
Firstly, one can notice that the CIs of parameter β of Model (10) do not contain the value
zero, which constitute year as a relevant covariate to explain part of the response’ variability.

Table 7. Posterior parameter estimates and 95% credible intervals for the tuberculosis dataset.

Model Parameter Mean Std. Dev.
95% CI

Lower Upper

(10)

α0 0.7285 0.7262 −0.5683 1.9650
α1 0.0007 0.0008 <−0.0001 0.0023
α2 <−0.0001 <0.0001 <−0.0001 <−0.0001
α3 <0.0001 <0.0001 <0.0001 <0.0001
β 0.0041 0.0004 0.0035 0.0047
ζ 208.1000 19.8200 172.4000 249.7000

(11)

α1 0.9998 0.0009 0.9982 1.0000
α2 −0.1817 0.0197 −0.2273 −0.1478
α3 −6.2030 0.5525 −7.3740 −5.1280
β 0.0002 0.0007 −0.0012 0.0015
ζ 340.1000 34.2600 275.5000 411.0000

The comparison procedure between the fitted models is presented in Table 8. One
can notice that even having one less parameter, the proposed semiparametric non-linear
model (Equation (11)) has performed much better than the polynomial model (Equation (10)).
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Table 8. Posterior comparison criteria for the fitted models for the tuberculosis dataset.

Model k pD DIC EAIC EBIC

(10) 6 4.171 3316.000 3323.942 3344.194
(11) 5 4.121 1582.000 1596.344 1613.220

Figure 3 illustrates the fitted means for the daily number of tuberculosis cases. When
considering the goodness-of-fit measure from Equation (5), we have that A[(10)] = 407
and A[(11)] = 315.83, which indicates that the semiparametric non-linear regression
model (Equation (11)) has performed better in predicting the number of tuberculosis cases.
In the following, these models were refitted considering only the first 215 observations, so
we could predict the 216th outcome (y216 = 6836). From Model (10), we have obtained
ŷ216 = 7926.76 (±0.019), and from the semiparametric non-linear regression model we
obtained ŷ216 = 7030.41 (±0.003), which also suggest a better fit of Model (11).
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Figure 3. Fitted means for the daily number of tuberculosis cases.

4. Concluding Remarks

Parametric non-linear approaches typically involve choosing a model among many
existing non-linear formulations, which can be a burden in many applications. Moreover,
most numerical iterative methods for model fitting strongly depend on choosing precise
initial values. However, non-linear models often provide insightful parameter (biological
or physical) interpretations for many researchers. In this sense, we aimed to introduce a
semiparametric non-linear regression framework as an alternative to standard non-linear
models. The proposed model can be considered an excellent alternative to many existing
nonparametric regression techniques based on spline smoothing and GAM. Approximate
posterior inferences for the model parameters were obtained from a fully Bayesian approach
based on MwG with weakly informative priors. The proposed model and some well-
established non-linear models were considered for analyzing three datasets. Based on the
prediction accuracy, we could conclude that the proposed semiparametric framework can
be a powerful alternative for estimation and prediction in non-linear settings.
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