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Abstract: This paper addresses the practical problem of scheduling operating room (OR) elective
surgeries to minimize the likelihood of surgical delays caused by the unavailability of capacity for
patient recovery in a central post-anesthesia care unit (PACU). We segregate patients according to their
patterns of flow through a multi-stage perioperative system and use characteristics of surgery type
and surgeon booking times to predict time intervals for patient procedures and subsequent recoveries.
Working with a hospital in which 50+ procedures are performed in 15+ ORs most weekdays, we
develop a constraint programming (CP) model that takes the hospital’s elective surgery pre-schedule
as input and produces a recommended alternate schedule designed to minimize the expected peak
number of patients in the PACU over the course of the day. Our model was developed from the
hospital’s data and evaluated through its application to daily schedules during a testing period.
Schedules generated by our model indicated the potential to reduce the peak PACU load substantially,
20-30% during most days in our study period, or alternatively reduce average patient flow time by
up to 15% given the same PACU peak load. We also developed tools for schedule visualization that
can be used to aid management both before and after surgery day; plan PACU resources; propose
critical schedule changes; identify the timing, location, and root causes of delay; and to discern the
differences in surgical specialty case mixes and their potential impacts on the system. This work
is especially timely given high surgical wait times in Ontario which even got worse due to the
COVID-19 pandemic.

Keywords: OR scheduling; constraint programming; load levelling

1. Introduction
1.1. Motivation

Demographic changes and political economic conditions have intensified the need and
demand for more efficient health care operations, including a call to reduce elective surgery
wait-times. For example, Health Quality Ontario, an organization established to advise
the province regarding the performance of its $55 billion annual health care expenditures,
maintains an up-to-date public Internet dashboard listing of surgical wait-times for six key
categories of procedures, not only at the provincial level but also by region and individual
hospital [1]. More recently, the province of Ontario has been trying to find ways, including
the privatization of healthcare, to reduce high and chronic surgical wait times, which have
gotten much worse over the years and the pandemic [2,3]. The situation is similar for
the rest of the country, and Canadian federal government and provinces reached a new
funding deal to improve healthcare over the next 10 years [4].

Our partner hospital is a 600-bed regional tertiary care hospital that has been exploring
opportunities to increase surgical throughput by means of establishing some operating
room (OR) schedule blocks as Rapid and Standardized Operating Rooms (called ‘RASTOR
rooms”). Their aim is to reduce wait-times in services where they exceed the provincial
benchmarks, by more than double in some service categories. While these RASTOR rooms
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1. Introduction

Item response theory (IRT; [1]) is the statistical analysis of test items in education, psychol-
ogy, and other fields of social sciences. Typically, a number of test items are administered to
test-takers. The primary interest lies in inferring the ability (performance or trait) based on the
test items. IRT models relate observed item responses to unobserved latent traits. Because the
latent trait is unobserved, there are many plausible choices for modeling these relationships.
The most popular class of IRT models is that of logistic IRT models [2].

Recently, in a series of papers and a well-written summary book, the researcher Dimiter
Dimitrov [3,4] suggested the classical D-scoring rule for scoring items that gives difficult
items a higher weight while easier items receive a lower weight. Subsequently, the so-called
latent D-scoring model has been proposed as a latent analog of the classical D-scoring
model [5]. However, it has been shown that this proposed model is statistically equivalent
to the widely used two-parameter logistic IRT model [6]. As argued later in this article,
the weights implied by this latent D-scoring model are far from perfectly related to the
weights in the classical D-scoring model. This article proposes an alternative IRT model, a
modified Ramsay quotient model, that can be interpreted as a latent analog ([3]; or a latent
mirror, [4]) of the classical D-scoring rule. The usefulness of the Ramsay quotient model is
demonstrated based on analytical and numerical arguments.

The remainder of the article is organized as follows. Section 2 briefly reviews IRT
models. In particular, it focuses on the two-parameter logistic and the Ramsay quotient
model. Section 3 reviews the classical and latent D-scoring model of Dimitrov. In Section 4,
a variant of the Ramsay quotient model is proposed intended to serve as an adequate
latent D-scoring model. The usefulness of this model is illustrated in Section 5 using five
empirical datasets. Finally, the article closes with a discussion in Section 6.
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2. Item Response Modeling

Let X = (X1, . . . , XI) be a vector of I binary random variables Xi (i = 1, . . . , I) that
are also referred to as items or item responses. A unidimensional IRT model [2,7,8] model
parametrizes the multivariate distribution P(X = x) for x = (x1, . . . , xI) ∈ {0, 1}I as

P(X = x) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
dFα(θ) , (1)

where Fα is the distribution function of the latent trait θ (also referred to as the ability
variable) that depends on a parameter α. The quantity Pi(θ; γi) = P(Xi = 1|θ) is referred
to as the item response function (IRF) for item i that depends on a parameter γi. From (1),
it can be seen that items i = 1, . . . , I are conditionally independent given the latent trait θ.
Some identification constraints on item parameters γi or distribution parameters α must be
imposed to ensure model identification [9].

If the IRT model (1) has been estimated, individual ability estimates θ̂ can be estimated
by maximizing the log-likelihood function l that gives the most likely ability estimate for θ
given a vector of item responses x. The log-likelihood function is given by (see [1])

l(θ) =
I

∑
i=1

[xi log[Pi(θ; γi)] + (1− xi) log[1− Pi(θ; γi)]] (2)

By taking the derivative with respect to θ in (2), the ability estimate θ̂ fulfills the nonlinear
equation

∂l
∂θ

(θ̂) =
I

∑
i=1

[
xi

P′i (θ̂; γi)

Pi(θ̂; γi)
− (1− xi)

P′i (θ̂; γi)

1− Pi(θ̂; γi)

]
= 0 , (3)

where P′i (θ) = (∂Pi)/(∂θ).
Most IRT models take the full item response pattern into account [10–12]. It is only

for the simple Rasch model (RM, [13], see Section 2.1.1) that the sum score is a sufficient
statistic, and not every item response pattern results in a different ability score.

2.1. Two-Parameter Logistic (2PL) Item Response Model

An important class of IRT models is the class of logistic IRT models. Logistic IRT
models employ the logistic link function for parameterizing IRFs. The IRFs in the two-
parameter logistic (2PL) model [14] are given by

Pi(θ) =
exp(ai(θ− bi))

1 + exp(ai(θ− bi))
, (4)

where ai denotes item discriminations and bi denotes item difficulties. The ability variable θ

is typically real-valued. Frequently, a normal distribution is chosen in the 2PL model.
However, this assumption can be weakened [15].

An important (and well-known) property of the 2PL model is that ∑I
i=1 aiXi is a

sufficient statistic for θ [2]. This directly follows because the individual log-likelihood
function defined in (2) can be derived as

l(θ) =

{
I

∑
i=1

aixi

}
θ−

I

∑
i=1

aibi −
I

∑
i=1

log[1 + exp(ai(θ− bi))] (5)

A frequently employed identification constraint in the 2PL model is E(θ) = 0 and
var(θ) = 1. Alternatively, the item discrimination and the item difficulty for one item can
be fixed; that is, ai = 1 and bi = 0 for some i ∈ {1, . . . , I}.
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2.1.1. Rasch Model (1PL Model)

The one-parameter logistic (1PL) model (RM; [13]) is obtained by setting all item
discriminations in the 2PL model equal to one (i.e., ai = 1 for i = 1, . . . , I). In this case, the
IRF is given by

Pi(θ) =
exp(θ− bi)

1 + exp(θ− bi)
. (6)

Note that, in (6), a difference between the ability θ and the item difficulty bi is involved.
Therefore, the model could also be referred to as the Rasch difference model. Note that
∑I

i=1 Xi is a sufficient statistic for θ in the RM.
In the RM, E(θ) = 0 is a frequently utilized identification constraint. Alternatively,

one item difficulty bi could be set to zero. As a further alternative, the mean of the item
difficulties could be set to zero.

2.1.2. Implementation

The 1PL model or the 2PL model can be estimated using marginal maximum like-
lihood (MML) using an expectation–maximization (EM) algorithm [16]. Alternatively,
the estimation could be carried out using Newton–Raphson algorithms. More gener-
ally, the R [17] packages mirt [18] (using the function mirt::mirt() in combination with
mirt::createItem() and mirt::createGroup() or sirt [19] (using the function sirt::xxirt())
allow users to arbitrarily define IRFs Pi(θ; γi) (i = 1, . . . , I) and distribution functions Fα in
the IRT model (1) that should be estimated.

2.2. Ramsay Quotient Model (RQM)

Ramsay [20] proposed a quotient of a positive ability variable ξ and a positive item
difficulty parameter Bi in their quotient model as an alternative to the difference model of
Rasch (see (6)). The IRF in the Ramsay quotient model (RQM; [20]) is defined as

P(Xi = 1|ξ) = exp(ξ/Bi)

Ki + exp(ξ/Bi)
. (7)

Note that the positive item parameter Ki also allows the representation of guessing effects
in multiple-choice items [20]. It should be emphasized that the RQM can be rewritten (7) as
(see [20])

P(Xi = 1|ξ) =
exp

{
1
Bi
(ξ− Bi log Ki)

}
1 + exp

{
1
Bi
(ξ− Bi log Ki)

} , (8)

which corresponds to a 2PL model with a positively valued ability. The item discrimination
and the item difficulty are given by ai = 1/Bi and bi = Bi log Ki, respectively. Interestingly,
the item discrimination is necessarily correlated with item difficulty. Also, note that
∑I

i=1(1/Bi)Xi is a sufficient statistic for the latent ability ξ because (8) is a 2PL model.
An interesting model might result in constraining Ki equal across items (i.e., Ki = K for
all i = 1, . . . , I). Then, the implied item discrimination ai is indirectly proportional to the
item difficulty bi. That is, we get aibi = log K.

To sum up, the RQM is a particularly constrained 2PL model with a positively valued
ability variable ξ. The item difficulty Bi from the RQM enters both item discrimination ai
and item difficulty bi from the 2PL model. Interestingly, the RQM is related to the dif-
fusion model of Ratcliffe that is utilized in cognitive psychology for modeling response
times [21,22]. Furthermore, the RQM shares the simplicity of the Rasch model if used with
only one item parameter but provides a simple alternative to handle guessing effects. In
contrast to the three-parameter logistic IRT model, a linearly weighted statistic of items for
the latent ability ξ is available for the RQM.
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Implementation

To estimate the RQM defined by the IRFs in (7), it is convenient to define θ̃ = log ξ

and b̃i = log Bi. These parameters are unbounded in contrast to the original definition in
the RQM. If a normal distribution for θ̃ is assumed, there is a log-normal distribution for ξ
results. The IRF in (8) can then be written as

P(Xi = 1|ξ) =
exp

{
exp(θ̃− b̃i)

}
Ki + exp

{
exp(θ̃− b̃i)

} =
1

Ki exp
{
− exp(θ̃− b̃i)

}
+ 1

. (9)

Using the last term on the right side of Equation (9) is preferable to avoid numerical overflow.

3. Dimitrov’s D-Scoring Approach
3.1. Classical D-Scoring Method

The classical D-scoring approach was proposed by Dimitrov [3]. Based on I observed
binary item responses Xi (i = 1, . . . , I), the classical D-score Dc is defined as

Dc =

I

∑
i=1

δiXi

I

∑
i=1

δi

, where δi = 1− P(Xi = 1) = P(Xi = 0) . (10)

The variable Dc is a weighted sum score in which the weights δi are given as one minus
the p-value πi =P(Xi = 1) of one item. Hence, difficult items are upweighted, and easy
items are downweighted in the scoring rule (10). Such a rationale for scoring items might be
appealing to some practitioners. Of course, it might be reasonable in a high-stakes test to in-
form test takers before the test administration when implementing such an unconventional
scoring rule [23].

3.2. Rational Function Model (RFM) as a Latent D-Scoring Model

Dimitrov and Atanasov [5] (see also [24]) propose an IRT model, the latent D-scoring
method that “can be seen as a latent analog to the classical” D-scoring method ([4], p. 64)
described in Section 3.1 (see (10)). The model is called the rational function model (RFM),
and the IRF for item i = 1, . . . , I is defined by

P(Xi = 1|D) = 1

1 +
[

1−D
D

βi
1−βi

]αi
, (11)

whereD is the latent ability variable taking values between 0 and 1. The parameter βi (with
0 < βi < 1) can be interpreted as a difficulty parameter in the RFM, and αi is a positive
shape parameter. Robitzsch [6] pointed out that the RFM is equivalent to the 2PL model (4)
by defining the transformed parameters

θ = log
D

1−D , bi = log
βi

1− βi
, and ai = αi . (12)

Hence, the estimation of the RFM can be carried out using software for the 2PL
model [6]. The only ambiguity is about specifying the distribution of the latent variable θ.
If an identification constraint is defined for an item (e.g., a1 = 1 and b1 = 0), sufficiently
flexible distributions for θ can be estimated, given the distribution parameters can be empir-
ically identified. The density function of D can be obtained using a density transformation
of θ (see Equation (12) in [6]).

As pointed out in [4] (Ch. 12), θ and D are typically highly correlated in empirical
applications (e.g., r > 0.999), although the ability estimators are nonlinearly (but monotoni-
cally) related.
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Dimitrov ([4], p. xiv) claimed that the latent D-score variable D “is a latent mirror” of
the classical D-score Dc, “with some advantages in the accuracy of estimation” ([4], p. xiv).
The authors computed the ability estimates D̂ and correlated them with Dc. In a real-data
example involving an English proficiency test with 100 items administered by the National
Center for Assessment in Saudi Arabia, the correlation was 0.974. It was argued that
this correlation was still high enough to demonstrate that the classical D-score Dc is a
good proxy of the latent D-score D̂ [4,5]. We tend to disagree with this reasoning. First,
reasonably different IRT models will typically lead to high correlations between their ability
estimates, questioning the usefulness of this measure. Second, it is clear that the two scores
will differ because they involve different weighting schemes. In the classical D-score Dc,
items are weighted by item difficulty δi in the sufficient statistic ∑I

i=1 δiXi, while the ability
estimate D̂ as a nonlinear transformation of the ability estimate θ̂ from the 2PL model
possesses the sufficient statistic ∑I

i=1 aiXi. Hence, the correlation between Dc and D̂ will be
primarily a function of the correlation of the weights δi and ai (i = 1, . . . , I) across items.
An obvious latent mirror of the classical D-scoring rule is obtained if the 2PL model would
be estimated with fixed item discriminations δi (as can also be seen in [25]). Then, the sum
score ∑I

i=1 δiXi would necessarily be a sufficient statistic of the ability θ. In the 2PL model
with fixed item discriminations, the standard deviation of θ can be freely estimated.

4. Modified Ramsay Quotient Model and the Classical D-Scoring Rule

In this section, we present an IRT model that directly implements the idea that more
difficult items should receive a higher score in the latent variable.

The RQM has the attractive property that it is equivalent to a particular 2PL model
(see Section 2.2) in which the difficulty of an item is simultaneously reflected in the item
discrimination and the item difficulty parameters. However, the RQM defined in (8) implies
that more difficult items (i.e., with a larger Bi) become downweighted in terms of item
discrimination (i.e., 1/Bi becomes smaller). This is the converse of what is defined in
the classical D-score Dc in (10). In the classical D-score computation, more difficult items
receive a higher weight.

Nevertheless, one could simply swap the roles of correct and incorrect item responses
in the RQM. We apply the RQM from (7) and (9) and define the IRF for an incorrect
item response

P(Xi = 0|η) = exp(ξ/Bi)

K + exp(ξ/Bi)
=

exp
{

exp(−η − b̃i)
}

K + exp
{

exp(−η − b̃i)
} , (13)

where b̃ = log bi and η = − log ξ. Note that the term “−η” appears in (13) because the
newly defined latent variable η should reflect its ability instead of its non-ability, which
is parametrized when modeling incorrect item responses (i.e., Xi = 0) with the RQM.
Also, note that we constrained all K parameters to be equal across items in (13) in order to
maximally reflect the item difficulty in the item parameter b̃i (and Bi = exp(b̃i)). Note that
the probability of a correct item response is given as

P(Xi = 1|η) = 1− P(Xi = 0|η) = K

K + exp
{

exp(−η − b̃i)
} . (14)

According to the 2PL parametrization of the RQM in (8), the IRF in (13) can be
written as

P(Xi = 0|η) =
exp

{
1
Bi
(exp(−η)− Bi log K)

}
1 + exp

{
1
Bi
(exp(−η)− Bi log K)

} , (15)

Consequently, ∑I
i=1(1/Bi)(1 − Xi) is a sufficient statistic for ξ = exp(−η), η, or any

injective transformation of η. Trivially, ∑I
i=1(1/Bi)Xi is also a sufficient statistic for these



Analytics 2023, 2 829

variables. Because incorrect item responses were applied in the RQM, Bi reflects item
easiness. Hence, easy items get downweighted in this sufficient statistic (and therefore
in η and their monotone transformations). This is the desired property in the classical
D-scoring approach.

The application of this variant of the RQM also depends on the joint K item parameter.
Of course, one can simultaneously estimate all item parameters b̃i (i = 1, . . . , I) and the
variance of η in the modified RQM. However, the fit of the IRT model will typically be a
function of K. Because our goal is to make the modified RQM maximally equivalent to the
classical D-scoring approach, we repeatedly fit the modified RQM on grid values of K (say,
from K = 1 to 100). Then, we choose the model whose associations in estimated weights
1/Bi from the modified RQM in (15) and the weights δi = 1− P(Xi = 1) are maximal (see
the next Section 5).

5. Numerical Examples

We tested our newly proposed latent D-scoring approach based on the modified RQM
(see Section 4) with the classical D-scoring approach discussed in Section 3.1 for several
datasets containing binary item responses. For each of the datasets, we fitted the RQM
assuming a normal distribution for the latent variable η with a fixed mean of 0, and we
estimated the standard deviation (SD) of η. We also estimated the difficulty parameter on the
log scale, meaning that b̃i was estimated, and the parameter Bi was computed as exp(b̃i).

For each dataset, we estimated the modified RQM for a fixed K parameter for
K = 1, 2, . . . , 100. Then, we fitted a linear regression model through the origin accord-
ing to the model

δi =
1
Bi
β+ ei for i = 1, . . . , I , (16)

where δi are the weights used in the classical D-score Dc. Based on the linear regres-
sion (16), we computed the determination coefficient R2 that quantifies how well the
weights δi = 1− P(Xi = 1) = 1− πi were approximated by the weights 1/Bi obtained
from the modified RQM as the latent D-scoring model. Because R2 is a function of K,
the optimal RQM that is intended to be used for latent D-scoring can be chosen with the
corresponding K that maximizes the determination coefficient R2(K).

We also specified a linear regression model of weights δi on item discriminations
ai from the 2PL model to assess the similarity of the classical D-scoring rule with the
scores from the latent D-scoring model by means of the determination coefficient R2. The
regression model was given by

δi = aiβ̃+ ẽi for i = 1, . . . , I . (17)

In order to compare the implications of the different weights from the models, we
computed correlations of the classical D-score with linearly weighted item scores, where
the weights were obtained from the RQM (i.e., the RQM D-score) and the 2PL model (i.e.,
the latent D-score), respectively.

All analyses were carried out in the R software (Version 4.3.1, [17]). The estimation of the
modified RQM utilized the sirt::xxirt() function in the R package sirt [19]. The R code for
model specification can be found at https://osf.io/nrcag (accessed on 26 September 2023).

In the following, results from five publicly available binary item response datasets
were reported. All datasets had no missing values.

The first dataset data.si06 from the R package sirt [19] contains 4441 students on
14 items. The data stem from a verbal comprehension test. Figure 1 displays the deter-
mination coefficient of the regression (16) of the weights δi of the classical D-score on the
weights 1/Bi obtained from the modified RQM as a function of the parameter K. There
is a maximum R2, which is attained at K = 12. Figure 2 displays the weights δi on the y
axis and the weights 1/Bi on the x axis for the optimal value K = 12. The estimated SD
of η from the RQM was 0.459. In addition, the fitted regression line from (16) is shown

https://osf.io/nrcag
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in Figure 2. It can be seen that the obtained R2 of 0.997 implies that weights δi from the
classical D-score were well predicted by weights 1/Bi from the RQM.

0 20 40 60 80 100

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

K

R
2

Figure 1. Dataset data.si06 from R package sirt: Determination coefficient R2 as a function of K for
the regression of weights δi used in classical D-scoring on estimated weights 1/Bi (see (16)). The red
triangle corresponds to the K value with the maximum R2.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 Bi

δ i

K = 12, R2 = 0.997

Figure 2. Dataset data.si06 from R package sirt: Regression of weights δi used in classical D-scoring
on estimated weights 1/Bi from the RQM with optimal K (see (16)).
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Figure 3 includes the regression (17) of weights δi on the estimated weights ai from
the 2PL model. It can be seen that the weights δi from the classical D-scoring rule are not
well predicted by weights ai estimated in the 2PL model. The determination coefficient
from the regression model was only R2 = 0.502.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ai

δ i
R2 = 0.502

Figure 3. Dataset data.si06 from R package sirt: Regression of weights δi used in classical D-scoring
on estimated weights ai from the 2PL model (see (17)).

The classical D-score was correlated with the RQM score at 0.9995, while the correlation
with the 2PL score was much lower at 0.9072.

Table 1 contains estimated item parameters from the RQM with K = 12 and the 2PL
model. In this table, normalized item weights for the sufficient statistics of the different
scores were computed that have an average weight of 1. It can be seen that normalized
weights based on the RQM and the δi parameters from classical D-scoring were very similar.
However, these weights substantially differed from the weights obtained from the 2PL
model, which are also displayed in Figure 3.

The second dataset data.numeracy can be found in the R package TAM [26]. It contains
876 students on 15 items. The data resulted from a numerical comprehension test. The
upper left panel in Figure 4 displays the determination coefficient of the regression (16)
of the weights δi of the classical D-score on the weights 1/Bi obtained from the modified
RQM. The estimated SD of η from the RQM was 0.505. The maximum R2 value of 0.999
was attained for K = 20. It can be seen in the upper left panel in Figure 4 that the weights
δi from the classical D-score were almost perfectly predicted by weights 1/Bi from the
RQM. The determination coefficient from the regression model of weights δi from classical
D-scoring onto weights ai from the 2PL model was R2 = 0.895. The classical D-score
correlated with the RQM score at 0.9999, while the correlation with the 2PL score was much
lower at 0.9909.
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Table 1. Dataset data.si06 from R package sirt: item parameters and normalized weights from the
Ramsay quotient model (RQM) and the two-parameter logistic (2PL) model.

CTT RQM 2PL Normalized Weights

Item πi δi b̃i Ki Bi 1/Bi ai bi δi 1/Bi ai

WV01 0.79 0.21 −0.08 12 0.92 1.08 1.51 −1.23 0.61 0.66 1.15
WV02 0.65 0.35 −0.46 12 0.63 1.59 0.70 −1.00 1.01 0.96 0.53
WV03 0.73 0.27 −0.33 12 0.72 1.39 1.80 −0.86 0.79 0.84 1.37
WV04 0.74 0.26 −0.32 12 0.73 1.37 2.08 −0.85 0.76 0.83 1.58
WV05 0.48 0.52 −0.88 12 0.42 2.40 1.03 0.10 1.53 1.45 0.79
WV06 0.68 0.32 −0.47 12 0.62 1.60 1.87 −0.66 0.92 0.97 1.43
WV07 0.85 0.15 0.24 12 1.27 0.78 1.26 −1.74 0.44 0.48 0.96
WV08 0.62 0.38 −0.63 12 0.54 1.87 1.98 −0.42 1.11 1.13 1.51
WV09 0.93 0.07 1.56 12 4.74 0.21 1.85 −2.02 0.21 0.13 1.41
WV10 0.48 0.52 −0.83 12 0.43 2.30 0.59 0.18 1.53 1.39 0.45
WV11 0.84 0.16 0.19 12 1.21 0.83 1.35 −1.63 0.46 0.50 1.03
WV12 0.73 0.27 −0.26 12 0.77 1.30 0.82 −1.35 0.80 0.79 0.63
WV13 0.46 0.54 −0.92 12 0.40 2.50 1.16 0.16 1.57 1.51 0.88
WV14 0.22 0.78 −1.35 12 0.26 3.88 0.40 3.25 2.27 2.35 0.30

Note. CTT = indices based on classical test theory; normalized weights were computed such that their mean
equals 1.

The third dataset data.read from the R package sirt contains 328 students on 12 items.
It stems from a reading comprehension test involving three reading comprehension text
stimuli. Like in the first dataset, weights from the classical D-score were satisfactorily
predicted by the weights from the RQM as indicated by the R2 of 0.999 (see the upper-
right panel in Figure 4). The optimal K regarding the maximum determination coefficient
was K = 12. The estimated SD of η from the RQM was 0.519. The determination coefficient
from the regression model of weights δi from classical D-scoring onto weights ai from the
2PL model was R2 = 0.425. The classical D-score correlated with the RQM score at 0.9998,
while the correlation with the 2PL score was much lower at 0.8742.

The fourth dataset data.pisaMath from the sirt package contains 565 students on
11 items. The data resulted from a PISA mathematics test involving Austrian students. As
the lower-left panel in Figure 4 indicates, the weights δi of the classical D-score were well
predicted (R2 = 0.999) by the weights from the modified RQM for the optimal K = 19.
The estimated SD of η from the RQM was 0.433. The determination coefficient from the
regression model of weights δi from classical D-scoring onto weights ai from the 2PL model
was R2 = 0.954. The classical D-score correlated with the RQM score at 0.9999, while the
correlation with the 2PL score was much lower at 0.9938.

Finally, the fifth dataset Psych101 from the KernSmoothIRT [27,28] package contains
379 students on 100 items. The data stem from an exam from a psychology class. The
lower-right panel in Figure 4 shows some notable deviations from the regression line, and
the determination coefficient R2 was 0.996 for the optimal value of K = 13. The estimated
SD of η from the RQM was 0.246. The determination coefficient from the regression model
of weights δi from classical D-scoring onto weights ai from the 2PL model was R2 = 0.493.
The classical D-score correlated with the RQM score at 0.9997, while the correlation with
the 2PL score was much lower at 0.9551.

It can be shown that item weights δi are a nonlinear function of 2PL item parameters ai
and bi [29]. Therefore, an anonymous reviewer argued that a low correlation between δi
and ai is expected. We agree with such a view. However, such an observation questions the
view of why one should ever believe that the classical D-score Dc approximates the latent
D-score D (or the other way around).

It was pointed out by an anonymous reviewer that the correlations between the
classical D-scores and the 2PL scores (i.e., latent D-score) were quite high because they
ranged between 0.9072 and 0.9938, with the exception of the third dataset (r = 0.8742) that
had the smallest number of items. However, we disagree with the anonymous reviewer
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that these correlation sizes would imply that classical and latent D-scores provide similar
findings. In contrast, the item weights implied by the different scoring rules are only
weakly related.
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Figure 4. Regression of weights δi used in classical D-scoring on estimated weights 1/Bi from the
RQM with optimal K (see (16)). Upper-left panel: dataset data.numeracy from R package TAM;
upper-right panel: dataset data.read from R package sirt; lower-left panel: dataset data.pisaMath
from R package sirt; lower-right panel: dataset Psych101 from R package KernSmoothIRT.

6. Discussion

This article searched for an IRT model that follows the principle of classical D-scoring
of Dimitrov. In this approach, more difficult items receive higher weights in the classical
D-score, which is a weighted sum score. It was shown that a variant of the RQM proves
useful in this regard. In the RQM, a weighted sum score is a sufficient statistic for the
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latent variable contained in this model. Furthermore, in our proposed model, more difficult
items are strongly weighted in the sum score. We demonstrated the adequacy of the RQM
through five example datasets. Because the weights in the classical D-score were very well
predicted by weights obtained from the RQM, one can interpret the RQM as a latent mirror
of the D-scoring model. Although the weights were not perfectly predicted in all datasets,
one can at least say that the RQM serves as a much more appropriate latent analog of the
classical D-scoring model than the latent D-scoring model originally proposed by Dimitrov.

The classical and latent D-scoring methods were applied to important fields in edu-
cational measurement. Research was conducted in the areas of differential item function-
ing [30], test equating and linking [31], multistage testing [32], and standard setting [33].
The proposed methodology can be compared in future research with appropriate adapta-
tions that involve the Ramsay quotient model.
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