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Abstract: Material-resolving computed tomography is a powerful and well-proven tool for various
clinical applications. For industrial scan setups and materials, several problems, such as K-edge
absence and beam hardening, prevent the direct transfer of these methods. This work applies
dual-energy computed tomography methods for material decomposition to simulated phantoms
composed of industry-relevant materials such as magnesium, aluminium and iron, as well as some
commonly used alloys like Al–Si and Ti64. Challenges and limitations for multi-material decomposi-
tion are discussed in the context of X-ray absorption physics, which provides spectral information
that can be ambiguous. A deep learning model, derived from a clinical use case and based on the
popular U-Net, was utilised in this study. For various reasons outlined below, the training dataset
was simulated, whereby phantom shapes and material properties were sampled arbitrarily. The
detector signal is computed by a forward projector followed by Beer–Lambert law integration. Our
trained model could predict two-material systems with different elements, achieving a relative error
of approximately 1% through simulated data. For the discrimination of the element titanium and its
alloy Ti64, which were also simulated, the relative error increased to 5% due to their similar X-ray
absorption coefficients. To access authentic CT data, the model underwent testing using a 10c euro
coin composed of an alloy known as Nordic gold. The model detected copper as the main constituent
correctly, but the relative fraction, which should be 89%, was predicted to be ≈70%.

Keywords: computer vision; deep learning; X-ray imaging; computed tomography; dual-energy
computed tomography

1. Introduction

X-ray computed tomography (CT) is a non-destructive, three-dimensional imaging
technique which is used for a broad spectrum of applications. In clinical practice, CT is
utilised as an in vivo diagnostic method in relation to a wide range of diseases and injuries,
as well as a planning tool for interventions. Industrially, CT is used as an advanced method
of quality control and failure analysis and applied to a wide range of samples, including
materials such as metals, plastic or advanced composites.

For clinical and industrial use cases, dual-energy CT (DECT) offers the possibility
of measuring additional spectral information about an object. DECT projections or to-
mograms can be used, for example, to discriminate between different materials (material
decomposition) [1].

Incorporating more data, like additional energy channels from a DECT scan, into the
processing pipeline, the engineering complexity of analysis algorithms increases rapidly. In
fact, the problem consists of a large number of variables on the input side with hidden or
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even unknown correlations between the variables. Especially for this type of problem, data-
driven methods offer the benefit of learning the mapping function from a data pool without
the knowledge of the underlying mechanism. Complex multi-material compositions and
structures are nowadays needed for numerous industrial, medical and consumer products.
The demand for material-resolving CT is expected to increase, especially given the new
manufacturing possibilities that are enabled by additive manufacturing techniques. Safety-
critical parts, in particular, necessitate a high level of quality assurance, which may include
confirmation of locally varying composition.

This work is a general simulation study that describes a fundamentally new concept
for discrete material decomposition using an industrial CT scan setup with a data-driven
method. For this purpose, established data-driven methods from clinical CT applications
will be transferred and adapted. Our contributions are as follows:

• A fast CT simulation pipeline which is capable of generating thousands of tomograms
for real-time training of the data-driven model.

• Quantitative end-to-end material decomposition results of simulated alloys without
relying on K-edge absorption and leveraging spatial information.

The last point is of high interest because the lack of K-edge absorption forces the
data-driven model to exploit other features, such as cupping, a common CT artefact, and
object or particle size, which cannot be extracted by classical pixel-wise algorithms. The
data-driven model learns this highly complex mapping without further engineering effort.
On top of this, the model may resolve material mixture ambiguities by extracting additional
but hidden information given by the dual-energy tomograms.

The remainder of this paper is divided into an overview of the CT background, related
work, the description of the data simulation, an overview of the data-driven model, selected
results showing representative or established material systems from a simulation, results
of a real scan of a 10c euro coin and an outlook. Additionally, we discuss the reasons for
certain boundaries given by the model itself, as well as the limitations given by physics
and how to exploit them in future work.

2. Computed Tomography Background

Following the discovery of X-rays in the late 19th century, it took more than 75 years to
reach the next technological milestone necessary for three-dimensional X-ray imaging—the
first commercial computed tomography scanner. X-ray images are projections of an object’s
interior onto a detector plane, where spatial depth information about the scanned object is
lost. Using reconstruction algorithms, depth information is retrieved by a mathematical
combination of all projections gathered from different angles of the same object. In detail,
the volume, which is the output of the reconstruction, is discretised on a grid of three-
dimensional volume pixels (voxels). Johann Radon introduced the underlying equation,
which was named after him as the Radon transform [2]. It is used to calculate projections of
an object on a detector plane from different angles. Therefore, the inverse Radon transform
is a reconstruction algorithm. In addition to the Radon transform, which is only formulated
for parallel-beam X-ray geometries, Feldkamp, Davis and Kress proposed a cone-beam
reconstruction algorithm (FDK algorithm), which allows the use of a point source for X-rays
and a two-dimensional detector in a practical setup at a reasonable cost of computation [3].

The properties of the X-ray source are typically tuned to the individual use case.
To penetrate objects with a high X-ray attenuation coefficient, the X-ray spectrum can
be hardened by increasing the acceleration voltage. Especially for strongly attenuating
objects, the use of pre-filtration can improve the overall image contrast measured by the
detector. The X-ray spectra produced by laboratory sources are initially polychromatic due
to the Bremsstrahlung effect by which X-rays are generated in the source’s target. More
information about the X-ray properties is provided in Section 4.2.

On the detector side, two basic technologies can be distinguished: photon-counting
detectors (PCD) and energy-integrating detectors (EID). As the name implies, EIDs integrate
the energy of arriving photons, which causes a loss of spectral information. Characteristic
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K-edge absorption is usually not observable using an EID without prior knowledge and a
careful setup of the X-ray source. In contrast, photon counting detectors measure counts
resolved by multiple energy bins across a certain range. Therefore, the spectral information
carried by the incoming photons is squeezed into the energy bins but is not completely lost.

Industrial and clinical CT systems differ in their machine setup. While clinical CT
scans attempt to provide sufficient image quality for diagnosis using the lowest amount of
X-ray dose possible, industrial CT scans are typically applied to objects that do not suffer
damage from high radiation exposures. It is also practical for the clinical application to
allow the patient to lie down and rotate the scanner around the body, which is generally
called gantry CT. For dual-energy measurements, different acquisition strategies can be
used to collect multiple sets of projections at different energy levels. In case the overall
measurement time is not capped and the object is fixed, the easiest strategy is to run two
scans (dual-scan) sequentially with the same parameters but with different X-ray spectra.
For DECT measurements in the presence of patient/sample motion, alternative strategies
are used, including either two independent CT imaging lines simultaneously (dual-source)
or using an X-ray tube, which supports fast kVp-switching. A further approach uses the
independent energy channels of a PCD or dual-layer detector to collect spectral information.
All DECT acquisition strategies lead to two tomograms that are not perfectly registered.
Mechanical uncertainties in the CT geometry and the spatial shift of the focal spot or
movement of the sample or patient have to be taken into account when processing the
DECT tomograms.

Taking a closer look at the reconstruction algorithm, it returns linear attenuation
coefficients µ

(x,y,z)
L across three spatial dimensions (x, y, z), an arrangement also known as

a tomogram. A material has a specific X-ray mass attenuation coefficient µm(E), which can
be multiplied by the material’s density ρ to obtain the linear attenuation coefficient

µL(E) = µm(E) · ρ. (1)

Looking at a single volume element, different materials with different volume fractions
can be present, so the total effective µL(E) is a linear combination of the individual µL,i(E)
where i enumerates the materials. Especially with more than two materials present, multiple
combinations of µm,i(E) and ρi can yield the same µL(E) measured for a given spectrum.

3. Related Work

Deep-learning approaches for material decomposition are rarely seen in industrial
applications. Fang et al. proposed a neural network for material decomposition using
CT scans of cargo containers in the MeV range [4]. Their method discriminates discrete
materials without allowing mixtures, but we are looking for a method to calculate material
fractions in multi-material systems. For this problem, several methods were studied for
clinical applications, which will be discussed in the following.

Heismann et al. published a fundamental method for the atomic number and density
decomposition of dual-energy CT measurements [1]. Their algorithm involves knowledge
about the source spectrum as well as the spectral response of the detector, which can
be quite challenging to measure exactly for a real CT scanner. Simply put, the method
maps two linear attenuation coefficients given by reconstructed dual-energy pixels to
two values that can be interpreted as atomic number and density. For material mixtures, the
calculated atomic number and density are averages of the underlying components, as the
linear attenuation coefficients result from combining those of the components. Extending
Equation (1) for mixtures containing N materials, the linear attenuation coefficient µL is
given by

µL(E) =
N

∑
i=0

µm,i(E) · ρi. (2)

Therefore, it is only defined for reconstructed volumes. This approach does not
use any spatial context knowledge, which means that the proposed algorithm is rather
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vulnerable to a low signal-noise ratio and CT artefacts like ring and beam hardening
artefacts, to name just a few. Additionally, due to the lack of spatial context, the dual-energy
tomograms must be perfectly registered. Depending on the DECT acquisition strategy (dual-
scan, dual-source and fast kVp-switching), the registration of the dual-energy tomograms
can be quite challenging. To our advantage, unlike living objects, industrially scanned
objects rarely move, so the dual-scan strategy is applicable if the measurement is not time-
critical. In contrast to Heismann’s approach, which incorporates expert domain knowledge
about X-ray CT, a data-driven approach has been pursued by several authors, which
exclusively operates on a large amount of exemplary data showing inputs and outputs of
the problem. Badea et al. proposed an end-to-end method to directly calculate material
maps from provided DECT tomograms [5]. They simulate two-dimensional phantoms
using a Delaunay algorithm [6], which samples triangular regions. Each region consists of
random volume fractions of the base materials. Subsequently, they use a forward projector
with different source spectra to calculate X-ray projections and an FDK reconstruction to
calculate the corresponding tomograms for each spectrum. The multi-energy tomograms
are then used as the input, and the initially sampled phantoms are used as the ground truth
output for their model. As described in Section 4, our approach follows this procedure for
generating the training data. In an interesting extension, Abascal et al. used tomograms
generated from the forward projections of experimental data [7], which narrows the sim-
to-real gap discussed later but also restricts the amount of training data available. In a
nutshell, there is currently no benchmark available as we have not come across an approach
that suits our intended application.

4. Methods

This section describes the basic physics behind material decomposition with DECT
and the methods used for data collection, model architecture and training. Since the perfor-
mance of a neural network relies on the quality and amount of data used for training, it is
very important to use data distributions matching the observed, case-specific distribution.
If the training data originates from a simulation and is not gathered and labelled from
the target distribution directly, the trained model might face a gap, which is termed the
sim-to-real gap. Nevertheless, this sim-to-real gap may be small and surmountable by
methods that will not be described in the scope of this paper but will be studied in future
work in order to use our algorithm on real-world CT scans.

Being a niche use case, we did not find any pre-trained models fitting into our environ-
ment, so we decided to train the model from scratch with data collected from a simulation
pipeline, which will be described in Section 4.1.

4.1. CT Simulation

Broadly, a CT scan consists of the acquisition of a sequence of projections followed by
a reconstruction. The projections pθ collected by the detector are formally the result of a
projection operator Pθ applied to the scanned object A under the CT angle θ resulting in

pθ = Pθ A. (3)

As described in the introduction, the recombination of all projections pθ by the recon-
struction operator P−1

θ results in the tomogram A′

A′ =
∫ 2π

0
dθ P−1

θ pθ . (4)

This is, regardless of the artefacts, a representation of the original object A.
Equation (4) integrates over a full-circle trajectory in the interval [0; 2π] since this is the
scan mode used in the scope of this paper. It is also possible to reconstruct with pro-
jections gathered in the interval [0; π + δ] where δ is the fan-beam opening angle. For
our model, we used tomograms as inputs and ground truth phantoms as outputs. An
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overview of the data generation pipeline is provided in Figure 1. The phantoms with
areas of different material compositions were generated by the phantom sampler, which
uses a Delaunay triangulation to create areas within certain boundaries randomly on a
given grid. For each triangular area, the material volume fractions were polled randomly
from a uniform distribution regarding overall volume conservation. The outer bounding
box of the phantoms was a two-dimensional square, which had an edge length between
10 mm and 50 mm, polled randomly. In the following, LE and HE will refer to the low-
and high-energy channels of the DECT measurements. The phantoms were projected and
reconstructed using the LE proj + reco and HE proj + reco methods, which wrapped the
ASTRA Toolbox [8,9]. To maintain proximity to the industrial application, a fan-beam
geometry was used together with an FDK reconstruction. The projection operator is the
critical part of this pipeline. Looking more closely at the projection operator, this can be
divided into a raytracer, which measures the intersection length of a specific ray through
the object, and a photon pipeline, which calculates the signal in a pixel resulting from the
X-ray spectrum and the attenuation physics in the object as well as the detector. For this
work, we used the forward projector implemented in the ASTRA toolbox, which integrates
densities along the intersection lengths of a ray through the object. The intersection lengths
were fed into the photon pipeline, which applied the Beer–Lambert law pixel-wise for some
initial spectrum I0(E), the mass attenuation coefficient µm,i of the phantom’s materials and
the phantom’s intersection lengths xρ

i weighted by the density ρ, while summing over i as
the material index:

IPhantom(E) = I0(E) · e−∑i µm,i(E)·xρ
i . (5)

Remember that the forward projector of the ASTRA Toolbox measures intersection
lengths xρ

i through voxel volumes weighted by the voxel values. Due to this handy
mechanism, the density ρ is already multiplied by the intersection length and vanishes
from the exponent in Equation (5). Equation (5) yields the photon counts behind the
phantom for each energy bin. Subsequently, the same equation is applied again to calculate
the photon counts after traversing the scintillator in the detector, which yields IScintillator(E)
and the number of photons absorbed in the scintillator for each energy bin.

Signal =

max(Eγ)∫
min(Eγ)

dE ζ(IPhantom(E)− IScintillator(E)) (6)

Integration over all energy bins with the according photon counts yields the detector
signal in Equation (6). Prior to the energy integration, the photon count within a specific
energy bin, denoted as E, undergoes adjustment through the application of the photon
statistics operator, represented as ζ. This operator extracts a random number from a Gaus-
sian distribution, with the actual photon count serving as the mean value and the square
root of the photon count acting as the standard deviation. The signal from Equation (6) was
normalised to the interval of the 16-bit unsigned integer datatype to maintain proximity
to real detectors in the experiment. Some constant electronic dark field noise was added
to the signal after normalisation to mimic the basic noise properties of a real detector.
Caesium iodide (CsI) was chosen as a scintillator material. Currently, we do not simulate
higher-order effects like, for example, the conversion efficiency of the photodiodes, pixel
cross-talk or scattering inside the detector. For best performance, the photon pipeline was
implemented using Nvidia’s CUDA API. The photon pipeline is likely to critically affect
the magnitude of the sim-to-real gap, but it also has significant execution time implications.
Therefore, a balance between performance and accuracy is required, and we decided to
neglect photon scattering for the scope of this work. The simulation pipeline, as shown
in Figure 1, is able to generate an image tuple in about 0.25 s using eight threads on an
Intel Xeon E5-1650 v4 hexacore CPU and a Nvidia 1080Ti GPU for reconstruction at a
resolution of 2 × 256 × 256 (channels, width, height). To increase the model’s robustness,
the CT geometry was randomly changed in a certain range. The magnification factor was



NDT 2024, 2 6

polled between 2 and 15. For two-dimensional phantoms, the line detector pixel pitch was
fixed at 0.2 mm and the pixel count was fixed at 1000. Consequently, 1000 projections were
calculated uniformly over a full-circle trajectory.

Figure 1. Pipeline overview for training data generation with computing modules in red and
data objects in green. A tuple (x, y) consists of a tensor of tomograms x and a tensor of material
phantoms y. The spatial dimensionality of x and y is identical, and the tomograms and phantoms are
fully registered.

4.2. Data

We implemented a simulation pipeline that samples data tuples similar to the data used
by Badea [5], but using more industry-relevant material combinations, such as magnesium,
aluminium and iron, as well as harder X-ray spectra, i.e., above 100 kVp. Due to the
heavily attenuating materials involved in the phantom and the physical dimensions of
several centimetres in diameter, this minimum peak voltage is required to have sufficient
photon penetration.

Figure 2 shows exemplary spectra of 100 kVp and 300 kVp together with the attenua-
tion coefficients of magnesium and aluminium. The spectrum of 100 kVp was pre-filtered
with 1 mm aluminium and the spectrum of 300 kVp was pre-filtered with 1 mm copper
and 1 mm tin. We used an energy-integrating detector model, which is commonly used for
industrial CT. The incident photons deposit a fraction of their total energy into the scintil-
lator, with a probability that depends on their intersection length through the scintillator
and energy. Therefore, the shaded areas indicate the photon energies with the highest
contribution (top 95%) to the measured signal. Compared to material decomposition in
clinical CT, where the K-edge absorption of different materials can be exploited, even the
lower spectrum of 100 kVp is completely unaffected by the highest available K-edge of
aluminium at around 1.56 keV. Photon energies below 50 keV are largely inconsequential
for industrial CT scans of metal samples. Thereby, the measured and observable differences
in attenuation coefficients between the materials are of fairly small amplitude. Using lower
energy spectra, the tomogram is increasingly affected by artefacts originating from a rapidly
decreasing signal-noise ratio. On the other side, higher energy spectra supply enough
high-energy photons to penetrate the object, but at the cost of decreasing contrast due to
the decreasing difference in linear attenuation coefficients with rising photon energy. In
order to train the model successfully involving two different materials, we needed carefully
balanced spectra to generate a sufficient contrast in low- and high-energy tomograms.
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Figure 2. Comparison of spectra and absorption coefficients: 95% of the signal, measured with an
energy-integrating detector, originates from the photons in the energy bins shaded below the curve
assuming a 0.4 mm CsI scintillator.

Figure 3 shows a training tuple, which has been simulated with magnesium and
aluminium at 80 kVp and 150 kVp. The training tuple consisted of two DECT tomograms
as inputs and two material maps as outputs, which were called ground truth in the context
of the training described in Section 4.3. As expected regarding Figure 2, higher attenuation
coefficients occurred in the low-energy tomogram. As mentioned before, we studied
two-material systems exclusively because the studied energy regime is dominated by
Compton scattering, where the attenuation behaviour of a third material can be expressed
as a linear combination of the other materials, resulting in a highly ill-posed prediction.

All phantoms displayed were sampled in a square and two-dimensional frame of
50 × 50 mm2. The resulting beam hardening for this configuration shown in Figure 3
was almost negligible. Nevertheless, it can be observed as a brightening around exterior
edges in scans with low acceleration voltages and high atomic number constituents in
the phantom. One dataset describing a copper-iron system is available for download via
Zenodo [10].

Figure 3. Data tuple used for training with a 80 kVp tomogram and a 150 kVp tomogram as inputs
on the left and ground truth material distributions of magnesium and aluminium on the right. The
tomograms share the colour scale on the left side. The material maps share the colour scale on the
right side.
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4.3. Model and Training

Regarding the model, we mainly followed the implementation of a U-Net proposed by
Ronneberger [11]. Figure 4 gives an overview of the model used. In detail, the input tensor
has a shape of 2× 256× 256 (channels, rows, columns), where the first dimension represents
the high- and low-energy channels, and the remaining describes the spatial dimensions.
The model can be split into two main parts, the encoder and the decoder. This specific
encoder uses convolutional and pooling layers to reduce the spatial dimensionality while
increasing the features. The convolution is conducted with a kernel size of 3, a stride of 1
and a zero-padding of 1. In the deepest layer, the tensor consists of 128 features and has a
remaining spatial dimensionality of 60 × 60 pixels. The decoder uses bilinear interpolation
to increase the spatial dimensions, replenishes the tensor with the corresponding tensor
from the encoder and convolves them in order to reduce the total feature count. We used
linear interpolation operations for the upsampling layers instead of upconvolutions to
reduce the number of trainable parameters and upsampling artefacts in general.

Figure 4. Model architecture mainly used for this work related to a shallow U-Net. Numbers above
tensors indicate the number of features.

For training, we used the Adam optimiser together with weight decay for regular-
ization [12]. The learning rate was initialized at 1 · 10−4 and weight decay was set to
1 · 10−3 The model was trained on 8000 tomogram-material-tuples for 300 epochs in about
two hours using one Nvidia RTX 4090. Training with more data leads to a faster conver-
gence, but the results are similar. Since the model does not overfit in the classical regime
(see Deep Double Descent [13]), we did not have to apply a certain stopping criterion.
Training was stopped when observing convergence or simply after 300 epochs, which
worked in most cases.

5. Results

This section describes the material decomposition tests of simulated samples in
Section 5.1 and the tests on real data in Section 5.2.

5.1. Test on Simulated CT Data

Figure 5 shows the results for aluminium (Al) and magnesium (Mg) using a low-
energy spectrum at 100 kVp and a high-energy spectrum at 300 kVp. The tomograms are in
the first column. Notice that in contrast to Figure 3, the high-energy tomogram appears to
have higher values than the low-energy tomogram. This change is due to the normalisation
of the tomograms across the whole dataset. With increasing peak acceleration voltage,
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and hence photon energy, the contrast seen in the tomograms decreases. This results in a
narrow distribution of values seen in the dataset compared to the low-energy dataset.

The ground truths are in the second column of the figure, the model predictions are in
the third, and the absolute differences between ground truth and model predictions are in
the last column.

Figure 5. Qualitative comparison of the model’s prediction (pred) and the ground truth (GT). The
input DECT tomograms are in the first column and normalised separately, but the colour scale is
shared next to them. The absolute differences between ground truths and predictions are shown in
the final column and are in units of density described by the colour scale on the right, which also
relates to ground truths and predictions. The amplitude of the difference images is magnified by 10.

The highest errors appear at edges or more precise discontinuities, where the model’s
upsampling linear layers are less accurate due to interpolation. Larger areas are predicted
with high accuracy. Even areas with a low density of magnesium are predicted correctly,
while the model does not assume mass or volume conservation at this point. A quantitative
assessment of performance is provided by Figure 6. The plot was calculated using 8000 test
tuples. Pixels containing neither magnesium nor aluminium have been excluded because
the prediction is trivial. As indicated by the colour scale, the clear majority of all points sit
close to the perfect fit where prediction equals ground truth.

Figure 6. Pixel-by-pixel comparison of ground truth and prediction for 8000 randomly polled tuples
from the test dataset. The colour scale indicates the number of points that fall in a certain bin. The
prediction and ground truth are expressed in relative fraction units for a specific pixel and material.
For instance, if a pixel consists of 30% magnesium, the corresponding ground truth value will be 0.3.

The mean ν and standard deviation σ of the residuals for this material system are given
by Table 1 along with other material systems that have been studied. The mean residuals
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for all material systems are close to zero. Mg–Al, Al–Fe and Ti64–AlSi are discriminated
successfully with the DECT setup using 100 kVp and 300 kVp as indicated by the low
standard deviation. For Fe–Cu and Ti64-Ti, the peak voltages were increased to 250 kVp
and 450 kVp in order to penetrate the materials. A plot showing photon flux and linear
attenuation for iron and copper is given by Figure A1 in the Appendix A. In the case of
Fe–Cu, the material decomposition works with almost the same precision as for the other
material systems with lighter elements. The decomposition of Ti64 versus Ti did not work
as well since the materials are extremely similar regarding the X-ray attenuation coefficients
(see Figure A2 in the Appendix A). A possibility to enhance the signal difference between
titanium and its alloy Ti64 is to lower the peak voltages of the spectra used, but lowering
the peak voltage is only possible when using smaller objects.

Table 1. Mean ν and standard deviation σ of the model’s residuals for different material combinations.
The superscripted dagger † indicates the usage of higher peak voltages for the X-ray spectra to
penetrate the samples sufficiently.

Mg–Al Al–Fe Fe–Cu † Ti64-AlSi Ti64-Ti †

ν/10−4 −6.2 9.00 9.56 −5.5 4.8
σ/10−3 9.17 9.56 10.26 9.3 52.4

Figure 7 shows the quantitative results for Ti64–Ti.

Figure 7. Pixel-by-pixel comparison of ground truth and prediction for a material consisting of Ti
and Ti64. The colour scale indicates the number of points that fall in a certain bin. Note the different
range described by the colour scale in comparison to Figure 6. The prediction and ground truth are
expressed in relative fraction units for a specific pixel and material.

Besides the five times higher standard deviation compared to the other material
systems studied above, the decomposition works qualitatively, as shown in Figure 8. The
algorithm identifies the main contributing element of each triangular area correctly. As
mentioned before, we did not find any comparable study to benchmark against. The
dataset [10] describing a copper-iron mixture, which has been uploaded to Zenodo, will be
used in future studies as a benchmark.
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Figure 8. Qualitative comparison of the model’s prediction (pred) and the ground truth (GT). The
input DECT tomograms are in the first column and normalised separately but share the colour scale
next to them. The absolute differences between ground truths and predictions are shown in the final
column and are in units of density described by the colour scale on the right, which also relates to
ground truths and predictions. The amplitude of the difference images is magnified by 10. Note
the lower image resolution compared to Figure 5 due to the high cost of computation and generally
slower convergence for this material system.

5.2. Test on Real CT Data

Despite being a simulation study, it is still highly valuable to assess the model’s
performance with real CT data. However, it should be noted that the simulation was not
adjusted to the actual geometry of a CT scanner, its detector, or the characteristics of the
source. We scanned a 10c euro coin using the CT scan setup in Table 2.

Table 2. CT scan setup and system specifications for the scan of a 10c euro coin.

CT Geometry Source: low-energy/high-energy

Magnification 3.5 Tube voltage 300 kVp/450 kVp
Projections 1500 full-circle Tube Current 2 mA/1 mA
Scan time 8 min Filter 1 mm Cu + 1 mm Sn

Detector

Type energy-integrating
Scintillator 400µm caesium iodide
Pixel Size 278µm

Number of Channels (1500, 1500)

A 10c euro coin is made out of an alloy called Nordic gold which consists of 89%
copper, 5% aluminium, 5% zinc and 1% tin. We trained a model to separate copper from a
5 + 5 + 1 aluminium, zinc and tin mixture, which is called residuals in the following, and
air. Therefore, the model predicts three channels: copper, residuals and air. Figure 9 shows
the low-energy, 300 kVp, tomogram, both energy tomograms along the cut line and the
model’s prediction.
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Figure 9. Overview of the 10c euro coin scan. (Left) low-energy tomogram with the cut line. (Middle)
low-energy and high-energy tomograms along the cut line. (Right) model’s prediction on copper,
residuals and air. The tomograms are normalised against the min-max range from the underlying
training dataset. The model output is in units of relative volume fraction. Ideally, 89% copper and
11% residuals are expected homogenically inside the coin.

The model recognises copper as the major constituent in the mixture as well as the
absence of air in the coin (see Figure 9 and Table 3). From a more quantitative point of view,
the copper fraction, which should be somewhere around 89%, does fluctuate between 65%
and 95% (see Figure 9), which is quite a large margin. Table 3 shows the quantitative results
of the coin’s region.

Table 3. Mean ν and standard deviation σ of the model’s prediction for each base material in a real
CT scan of Nordic gold calculated in the coin. The real copper fraction in Nordic gold is 89%, which
is around 20% higher than our model predicted. The mean fractions in the table do not sum to 100%
since the values shown are rounded.

Copper Residuals Air

ν/10−2 69.8 30.2 0.1
σ/10−2 21.7 21.7 0.3

The relative fraction between copper and the residuals predicted by the model seems to
depend on the intensity of the cupping artefact, which might be the outcome of inaccurate
modelling of the underlying X-ray physics. This problem might be solved by improving the
simulation with a more accurate detector model and scatter radiation, which contradicts
our idea behind this approach. Decreasing the sample size or removing heavily attenuating
materials from the sample may increase the model’s performance. Nevertheless, samples
in industrial CT scanning scenarios are manufactured using certain materials, and the
exclusion of some materials or samples above certain dimensions does not seem feasible.
The approach presented in this paper is limited to small samples and light materials without
further investigations. One solution for developing a more flexible system might be the use
of a linear accelerator with acceleration voltages up to several MeV. While decreasing the
contrast between materials significantly, the increased X-ray penetration may solve some of
the limitations of our current approach.

6. Outlook

As discussed, our work describes a model that has been trained on simulated datasets
exclusively; hence, the next step will be the transfer to real-world CT scans. In Section
5.2, the model is tested on a real CT scan of a 10c euro coin. The results are promising
from a qualitative point of view: the model identifies copper as the main constituent of
the alloy called Nordic gold. Taking a closer look at the quantitative copper fractions
predicted, the model is not able to handle heavy cupping artefacts, which makes it hard
to use on samples comparable to a 10c euro coin in terms of material and dimensions.
The use of a linear accelerator could help due to the increased X-ray penetration, but it
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will lead to other problems, such as reduced material contrast and even more complex
simulations due to the increasing influence of scatter radiation, which is not modelled
in the current simulation. We will investigate the noise characteristics of a real CT scan
compared to the currently implemented noise model in the simulation and evaluate as
well as improve the simulation of beam hardening effects. Obviously, when doing the
transfer to a real CT scanner, machine uncertainties, for example, mechanical displacements
and fluctuating properties of the X-ray spectra, have to be taken into account. In order to
compare all these effects quantitatively, a known sample is needed to conduct CT scans
and simulations simultaneously. Knowing the different behaviours of the simulation and
the real CT scan, two different approaches are possible: The obvious way is to increase the
quality of the simulation until it becomes indistinguishable from real CT scans, which is
not economical. Monte-Carlo-based X-ray simulations can produce outstanding results,
but they are extremely expensive to run. An alternative to overcome the sim-to-real gap
can be an adapted training strategy, which has been studied intensively in the past in other
contexts. Pre-training the model followed by a subsequent fine-tuning on real-world data
is referred to as transfer learning and has been studied for a segmentation task using a
U-Net on clinical ultrasonic and X-ray datasets by Amiri et al. [14].

Another parameter which will be crucial for industrial applications is the physical size
of the sample to be scanned. As discussed in Section 5, larger samples are more difficult
to process since the X-ray attenuation coefficients of different materials narrow in spread
with increasing photon energy. Additionally, different physical samples will be scanned
and published to have a benchmark for future works with respect to sample size, material
and machine effects.

Regarding the model architecture itself, the next step could be the implementation of
a three-dimensional U-Net to process volumetric data from tomograms. Additionally, the
material decomposition for more than two materials is highly ill-posed. For this reason, the
model should state some kind of measure for the uncertainty of the prediction. Bayesian
models could handle these uncertainties by using probability distributions instead of
explicit weights inside the model.
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Appendix A

Figure A1. Comparison of spectra and absorption coefficients. 95% of the signal, measured with an
energy-integrating detector, originates from the photons in the energy bins shaded below the curve
assuming a 0.4 mm CsI scintillator.

Figure A2. Comparison of spectra and absorption coefficients. 95% of the signal, measured with an
energy-integrating detector, originates from the photons in the energy bins shaded below the curve
assuming a 0.4 mm CsI scintillator.
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