Previous Issue
Volume 2, September
 
 

Hardware, Volume 2, Issue 4 (December 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 6147 KiB  
Article
Tactile Simultaneous Localization and Mapping Using Low-Cost, Wearable LiDAR
by John LaRocco, Qudsia Tahmina, John Simonis, Taylor Liang and Yiyao Zhang
Hardware 2024, 2(4), 256-272; https://doi.org/10.3390/hardware2040012 (registering DOI) - 29 Sep 2024
Abstract
Tactile maps are widely recognized as useful tools for mobility training and the rehabilitation of visually impaired individuals. However, current tactile maps lack real-time versatility and are limited because of high manufacturing and design costs. In this study, we introduce a device (i.e., [...] Read more.
Tactile maps are widely recognized as useful tools for mobility training and the rehabilitation of visually impaired individuals. However, current tactile maps lack real-time versatility and are limited because of high manufacturing and design costs. In this study, we introduce a device (i.e., ClaySight) that enhances the creation of automatic tactile map generation, as well as a model for wearable devices that use low-cost laser imaging, detection, and ranging (LiDAR,) used to improve the immediate spatial knowledge of visually impaired individuals. Our system uses LiDAR sensors to (1) produce affordable, low-latency tactile maps, (2) function as a day-to-day wayfinding aid, and (3) provide interactivity using a wearable device. The system comprises a dynamic mapping and scanning algorithm and an interactive handheld 3D-printed device that houses the hardware. Our algorithm accommodates user specifications to dynamically interact with objects in the surrounding area and create map models that can be represented with haptic feedback or alternative tactile systems. Using economical components and open-source software, the ClaySight system has significant potential to enhance independence and quality of life for the visually impaired. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop