Reprint

Interactions between Group Theory, Symmetry and Cryptology

Edited by
April 2020
164 pages
  • ISBN978-3-03928-802-1 (Paperback)
  • ISBN978-3-03928-803-8 (PDF)

This book is a reprint of the Special Issue Interactions between Group Theory, Symmetry and Cryptology that was published in

Biology & Life Sciences
Chemistry & Materials Science
Computer Science & Mathematics
Physical Sciences
Summary
Cryptography lies at the heart of most technologies deployed today for secure communications. At the same time, mathematics lies at the heart of cryptography, as cryptographic constructions are based on algebraic scenarios ruled by group or number theoretical laws. Understanding the involved algebraic structures is, thus, essential to design robust cryptographic schemes. This Special Issue is concerned with the interplay between group theory, symmetry and cryptography. The book highlights four exciting areas of research in which these fields intertwine: post-quantum cryptography, coding theory, computational group theory and symmetric cryptography. The articles presented demonstrate the relevance of rigorously analyzing the computational hardness of the mathematical problems used as a base for cryptographic constructions. For instance, decoding problems related to algebraic codes and rewriting problems in non-abelian groups are explored with cryptographic applications in mind. New results on the algebraic properties or symmetric cryptographic tools are also presented, moving ahead in the understanding of their security properties. In addition, post-quantum constructions for digital signatures and key exchange are explored in this Special Issue, exemplifying how (and how not) group theory may be used for developing robust cryptographic tools to withstand quantum attacks.
Format
  • Paperback
License
© 2020 by the authors; CC BY-NC-ND license
Keywords
cryptography; non-commutative cryptography; one-way functions; NP-Completeness; key agreement protocol; group theory; symmetry; Engel words; alternating group; WalnutDSA; digital signatures; post-quantum cryptography; cryptanalysis; braid groups; algorithms in groups; group-based cryptography; Reed–Solomon codes; key equation; Berlekamp–Massey algorithm; Sugiyama et al. algorithm; euclidean algorithm; numerical semigroup; Weierstrass semigroup; semigroup ideal; error-correcting code; algebraic-geometry code; lightweight cryptography; permutation group; block cipher; generalized self-shrinking generator; t-modified self-shrinking generator; pseudo-random number generator; statistical randomness tests; cryptography; pseudorandom permutation; block cipher; ideal cipher model; beyond birthday bound; provable security; group key establishment; group theory; provable security; protocol compiler