

an Open Access Journal by MDPI

Hydrogen Production via Ion Exchange Membrane Water Electrolysis: Progress and Challenges

Guest Editor:

Dr. Hoon T. Chung

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Deadline for manuscript submissions:

closed (10 October 2021)

Message from the Guest Editor

Ion exchange membrane water electrolysis proposes many advantages, including compact size, high H2 production rate, and flexibility to the alternating electrical inputs, thus making it a very suitable H2 production technology for renewable energy sources.

Types of ion exchange membrane water electrolysis are proton exchange membrane (PEM) electrolysis and anion exchange membrane (AEM) electrolysis. PEM water electrolysis works in acidic environments and is a relatively mature technology. However, the cost of PEM electrolysis is still very high due to the use of expensive and rare materials. AEM water electrolysis works in alkaline environments, making it accessible for use with inexpensive materials. However. AEM electrolysis technology has not been fully developed yet for practical applications.

This Special Issue is intended to cover both PEM and AEM water electrolysis technologies in order to help grasp the progress and challenges of both technologies and eventually contribute to the advancement of ion exchange membrane water electrolysis technologies.

Keywords:

AEM water electrolysis; PEM water electrolysis;

electrolysis system; membrane;

an Open Access Journal by MDPI

Editor-in-Chief

Prof. Dr. Giulio Nicola CerulloDipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

Message from the Editor-in-Chief

As the world of science becomes ever more specialized, researchers may lose themselves in the deep forest of the ever increasing number of subfields being created. This open access journal Applied Sciences has been started to link these subfields, so researchers can cut through the forest and see the surrounding, or quite distant fields and subfields to help develop his/her own research even further with the aid of this multi-dimensional network

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q1 (Engineering, Multidisciplinary) / CiteScore - Q1 (General Engineering)

Contact Us