Special Issue

Advances and Applications in Structural Vibration Control

Message from the Guest Editors

Engineering structures characterized by increased height and slenderness, such as high-rise buildings, expansive cross-sea bridges, wind turbines and floating platforms, are frequently located in regions with high-intensity dynamic hazards and challenging marine environments. These structures are susceptible to various external dynamic loads, including winds, earthquakes, sea waves and vibrations induced by construction or subway activities. Effective structural vibration control is paramount for bolstering the resilience and safety of such engineering structures. This Special Issue aims to explore the recent advances and applications of structural vibration control, and potential topics include, but are not limited to, the following:

- Seismic retrofitting techniques;
- Passive/active/semi-active/hybrid control;
- Advanced vibration control strategies;
- Vibration control of engineering structures;
- Novel control devices, i.e., inerter, negative stiffness and metamaterials, etc.;
- Applications of artificial intelligence in structural vibration control;
- Applications of different control devices;
- Vibration control of smart structures.

Guest Editors

Prof. Dr. Ruisheng Ma

Dr. Haoran Zuo

Dr. Kunjie Rong

Dr. Siyuan Wu

Deadline for manuscript submissions

closed (30 September 2025)

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

mdpi.com/si/192854

Buildings Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 buildings@mdpi.com

mdpi.com/journal/ buildings

an Open Access Journal by MDPI

Impact Factor 3.1 CiteScore 4.4

About the Journal

Message from the Editor-in-Chief

Current urban environments are home to multi-modal transit systems, extensive energy grids, a building stock, and integrated services. Sprawling neighborhoods are composed of buildings that accommodate living and working quarters. However, it is expected that the cities and communities of the future will face complex and enormous challenges, including maintenance, interconnectivity, resilience, energy efficiency, and sustainability issues, to name but a few. A smart city uses advanced technologies and a digital infrastructure to improve the outcomes in every aspect of a city's operations. A smart building optimizes the experience of occupants, staff, and management by using a modern and connected environment. Innovations in technology that can bring dramatic improvements to design, planning, and policy are critical in developing the cities and buildings of the future.

Editor-in-Chief

Prof. Dr. David Arditi

Construction Engineering and Management Program, Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, 3201 South Dearborn Street, Chicago, IL 60616, USA

Author Benefits

High Visibility:

indexed within SCIE (Web of Science), Scopus, Ei Compendex, Inspec, and other databases.

Journal Rank:

JCR - Q2 (Construction and Building Technology) / CiteScore - Q1 (Architecture)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.9 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).