

an Open Access Journal by MDPI

2D Ultrathin Carbon Films

Guest Editors:

Prof. Dr. Fabrice Piazza

Nanoscience Research Laboratory, Pontificia Universidad Católica Madre y Maestra, Autopista Duarte Km 1 1/2, Apartado Postal 822, Santiago, Dominican Republic

Dr. Marc Monthioux

Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES), CNRS, Université de Toulouse, 29, Rue Jeanne Marvig, BP 94347, 31055 Toulouse CEDEX 4, France

Deadline for manuscript submissions:

closed (15 December 2020)

Message from the Guest Editors

Although a number of 2D ultrathin carbon films have been the focus of research for quite a long time now, such as nanometer-thick amorphous carbon films for hard drive protective coating application, the field has recently experienced a surge in activity with new promising materials arising, such as twisted bi-layer graphene (2LG) and diamanoids. The outstanding physical properties of these 2D carbon materials, such as superconductivity in twisted 2LG and tunable semiconducting behavior in wide band-gap diamanoids, combined with high potentiality for green mass-production, opens the door to significant advances in a wide range of key technologies, where they can compete with more complex materials, which are more challenging to manufacture, such as transition metal dichalcogenides.

