

an Open Access Journal by MDPI

Catalytic CO₂ Conversion

Guest Editors:

Dr. Zhuo Xiong

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Prof. Dr. Xiaobo Chen

Department of Chemistry, College of Arts and Sciences, University of Missouri—Kansas City, Kansas City, MO 64110, USA

Prof. Dr. Yongchun Zhao

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Message from the Guest Editors

Catalytic CO₂ conversion is a promising route to reducing CO₂ emission and providing valuable chemicals and fuels. However, the traditional CO₂ conversion process usually suffers from high reaction temperature and large energy consumption. To achieve a carbon-neutral CO₂ conversion process, it is necessary to drive CO2 conversion by using renewable energies such as solar energy, wind, and/or renewable hydrogen and electricity. Therefore, CO₂ conversion including photocatalysis, catalytic electrocatalysis, and thermalcatalysis has attracted wide attention and will play a more important role in the near future. This Special Issue welcomes both review and original research articles on all aspects of catalytic CO2 conversion

Deadline for manuscript submissions:

closed (30 November 2022)

