

an Open Access Journal by MDPI

Catalytic Removal and Resource Utilization of NOx

Guest Editor:

Dr. Zhaoyang Fan

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Deadline for manuscript submissions:

closed (31 July 2023)

Message from the Guest Editor

Dear Colleagues,

As the major gaseous pollutants, nitrogen oxides like N₂O, NO, and NO₂ can be originated from the combustion processes in both stationary and mobile sources. They contribute to a series of environmental concerns including the greenhouse effect, which pose a tremendous threat to human health as well as the ecosystem around us.

The selective catalytic reduction of NO_x by NH₃ under medium and low-temperature range used to be the research hotspot. However, the coexistence of H₂O, SO₂, and volatile organic compounds in practical circumstances poses a great challenge to the catalysts. In this context, the development of catalysts with high SO₂ resistance, ammonium bisulfate resistance, and the synergistic NOx-VOC removal capability would be of great importance.

With the aim of building better catalysts for a sustainable world, submissions to this special issue "Catalytic Removal and Resource Utilization of NOx" in the form of original research papers or short reviews regarding the following topics (Low-temperature NH₃-SCR of NOx, SO₂ resistance, Ammonium bisulfate (ABS) resistance, Synergistic NOx-VOCs removal, Resource utilization of NOx) are welcome.

