

an Open Access Journal by MDPI

Surface Engineering via Advanced Manufacturing for Tribological Performance

Guest Editors:

Dr. Sameehan S. Joshi

Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA

Dr. Sangram Mazumder

Intel Corporation, Hillsboro, OR 97124, USA

Dr. Yiliang (Leon) Liao

Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA

Deadline for manuscript submissions: **25 May 2025**

mdpi.com/si/207940

Message from the Guest Editors

Innovative surface engineering strategies based on advanced manufacturing techniques are currently being developed through continuous research activities to overcome surface degradation due to wear. Examples of these techniques include laser-based surface engineering, electron beam surface processing, wire arc processing, plasma-based processing, friction stir processing, friction surfacing, cold-spray-based processing, and various additive manufacturing processes. These advanced manufacturing methods are paving the way for the development of a range of strategic solutions, including wear-resistant coatings, the synthesis of surface composites, engineered textured surfaces for lubricant storage and on-demand delivery, the modification of surface laver microstructures through thermal/thermomechanical treatments, surface-finishing operations for reduced friction, *in-situ* or *ex-situ* surface polishing, and the fabrication of multi-material, multilayered structures via additive manufacturing.

The Special Issue aims to collect state-of-the-art innovation in surface engineering strategies based on advanced manufacturing for enhanced tribological performance.

