

an Open Access Journal by MDPI

Fabrication and Performance of Brazed Diamond Abrasive Tools

Guest Editors:

Prof. Dr. DeKui Mu

Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China

Prof. Dr. Guogin Huang

Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China

Deadline for manuscript submissions:

closed (30 April 2022)

Message from the Guest Editors

Dear Colleagues,

Active brazing has been recognized as a promising fabrication method for diamond abrasive tools, because of the superior bonding strength formed through the interface reaction between bonding metals and diamond grits. Recently, attempts to reveal the bonding and wetting mechanisms of synthetic diamond abrasive at relatively low temperatures have provided a possibility to develop novel diamond grinding and cutting tools that are conventionally fabricated by sintering or electroplateing techquiues, i.e. dicing blades or diamond saws with fine grits size.

This Special Issue aims to explore the latest progress with a focus on (1) bonding mechanisms of brazed synthetic diamond; (2) development of brazing methodologies and instruments for diamond abrasive tools; (3) evaluation of grinding performance of brazed diamond abrasive tools, especially the wear mechanisms of brazed diamond grits. Last but not least, the fabrication and characterization of diamond metal matrix composites for thermal management of modern electronic devices is also welcomed.

an Open Access Journal by MDPI

Editors-in-Chief

Prof. Dr. Hugo F. Lopez

Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

Prof. Dr. Yong Zhang

Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

Message from the Editorial Board

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure - disciplines in metallurgical field the ranging from processing. and mechanical behavior. phase transitions microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Author Benefits

Open Access: free for readers, with <u>article processing charges (APC)</u> paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science),

Inspec, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q2 (*Metallurgy and Metallurgical Engineering*) / CiteScore - Q1

(Metals and Alloys)

Contact Us

Metals Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 www.mdpi.com mdpi.com/journal/metals metals@mdpi.com X@Metals_MDPI