Medical Application of Polymer-Based Composites IV

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 October 2024 | Viewed by 4466

Special Issue Editor


E-Mail Website
Guest Editor
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
Interests: biomaterials; optomechanronics; dental biomechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer composites have been used for various applications in aerospace, automotive, marine, military, and sport industries. Recently, polymer-based composites have received attention in the medical field for fabricating bioactive, resorbable, and cell-growth-promoting components for tissue engineering, wound dressing, drug release, dental-resin-based composites, and surgical implantation. In this regard, we are organizing a Special Issue on the recent developments and main benefits of various types of polymer composites and their fabrication technologies. This Special Issue is open to any subject related to the development of medical applications of polymer-based composites.

Prof. Dr. Haw-Ming Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites
  • biomaterial
  • tissue engineering
  • biodegradable implants
  • dental-resin-based composites
  • wound-dressing composites
  • drug-releasing composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 6783 KiB  
Article
Early Biological Response to Poly(ε-Caprolactone)/Alumina-Toughened Zirconia Composites Obtained by 3D Printing for Peri-Implant Application
by Riccardo Pedraza, Alessandro Mosca Balma, Ilaria Roato, Clarissa Orrico, Tullio Genova, Giacomo Baima, Giovanni Nicolao Berta, Andrea Giura, Luigi Ribotta, Donatella Duraccio, Maria Giulia Faga and Federico Mussano
Polymers 2024, 16(17), 2521; https://doi.org/10.3390/polym16172521 - 5 Sep 2024
Viewed by 599
Abstract
The improvement of the mucosal sealing around the implant represents a challenge, one that prompted research into novel materials. To this purpose, a printable poly(ε-caprolactone) (PCL)-based composite loaded with alumina-toughened zirconia (ATZ) at increasing rates of 10, 20, and 40 wt.% was prepared, [...] Read more.
The improvement of the mucosal sealing around the implant represents a challenge, one that prompted research into novel materials. To this purpose, a printable poly(ε-caprolactone) (PCL)-based composite loaded with alumina-toughened zirconia (ATZ) at increasing rates of 10, 20, and 40 wt.% was prepared, using a solvent casting method with chloroform. Disks were produced by 3D printing; surface roughness, free energy and optical contact angle were measured. Oral fibroblasts (PF) and epithelial cell (SG) tests were utilized to determine the biocompatibility of the materials through cell viability assay and adhesion and spreading evaluations. The highest level of ATZ resulted in an increase in the average roughness (Sa), while the maximum height (Sz) was higher for all composites than that of the unmixed PCL, regardless of their ATZ content. Surface free energy was significantly lower on PCL/ATZ 80/20 and PCL/ATZ 60/40, compared to PCL and PCL/ATZ 90/10. The contact angle was inversely related to the quantity of ATZ in the material. PF grew without variations among the different specimens at 1 and 3 days. After 7 days, PF grew significantly less on PCL/ATZ 60/40 and PCL/ATZ 80/20 compared to unmixed PCL and PCL 90/10. Conversely, ATZ affected and improved the growth of SG. By increasing the filler amount, PF cell adhesion and spreading augmented, while PCL/ATZ 80/20 was the best for SG adhesion. Overall, PCL/ATZ 80/20 emerged as the best composite for both cell types; hence, it is a promising candidate for the manufacture of custom made transmucosal dental implant components. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

17 pages, 5910 KiB  
Article
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
by Rui F. Martins, Ricardo Branco, Miguel Martins, Wojciech Macek, Zbigniew Marciniak, Rui Silva, Daniela Trindade, Carla Moura, Margarida Franco and Cândida Malça
Polymers 2024, 16(13), 1868; https://doi.org/10.3390/polym16131868 - 29 Jun 2024
Viewed by 1366
Abstract
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were [...] Read more.
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting the materials’ potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

15 pages, 3423 KiB  
Article
Modeling, the Optimization of the Composition of Emulgels with Ciclopirox Olamine, and Quality Assessment
by Agne Mazurkeviciute, Inga Matulyte, Marija Ivaskiene and Modestas Zilius
Polymers 2024, 16(13), 1816; https://doi.org/10.3390/polym16131816 - 26 Jun 2024
Viewed by 979
Abstract
The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and [...] Read more.
The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and produce experimental emulgels containing 1% ciclopirox olamine and to evaluate their physical, rheological, and mechanical properties and their ability to release ciclopirox olamine. The objective was to optimize the composition of the experimental emulgel containing 1% ciclopirox olamine by applying a central composite design based on selected criteria. The surfactant (polysorbate 80) had the greatest influence on the physical, rheological, and mechanical properties of the emulgels, as well as on the release of ciclopirox olamine from these systems. During the optimization process, an emulgel of optimal composition was generated containing 38.27% mineral oil, 6.56% polysorbate 80, and 55.17% hydrogel containing 1% ciclopirox olamine, meeting specified criteria (dependent variables) including the maximum flux of ciclopirox olamine, the minimum sol–gel transition temperature (Tsol/gel), and the minimum particle size of the oil phase. The oil phase particle size (D50) of this emulgel was determined to be 0.337 µm, the system Tsol/gel was 9.1 °C, and the flux of ciclopirox olamine from this gel matrix was calculated to be 1.44 mg/cm2. This emulgel of optimal composition could be used to treat fungal skin diseases. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 4142 KiB  
Review
Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review
by Sylwia Grabska-Zielińska
Polymers 2024, 16(18), 2679; https://doi.org/10.3390/polym16182679 - 23 Sep 2024
Viewed by 861
Abstract
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The [...] Read more.
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The introduction of a third component can significantly improve the mechanical strength, biocompatibility, and functionality of the resulting materials. Cross-linking is often employed to further enhance these properties, with chemical cross-linking agents being the most widely used method. This article provides an overview of the chemical agents utilized in the cross-linking of three-component biomaterials. The literature review focused on cases where the material was composed of three components and a chemical substance was employed as the cross-linking agent. The most commonly used cross-linking agents identified in the literature include glyoxal, glutaraldehyde, dialdehyde starch, dialdehyde chitosan, and the EDC/NHS mixture. Additionally, the review briefly discusses materials cross-linked with the MES/EDC mixture, caffeic acid, tannic acid, and genipin. Through a critical analysis of current research, this work aims to guide the development of more effective and safer biopolymeric materials tailored for biomedical applications, highlighting potential areas for further investigation and optimization. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

Back to TopTop