Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = β-carbonic anhydrases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3911 KB  
Article
Novel Derivatives of 3-Amino-4-hydroxy-benzenesulfonamide: Synthesis, Binding to Carbonic Anhydrases, and Activity in Cancer Cell 2D and 3D Cultures
by Valdas Vainauskas, Rugilė Norvaišaitė, Birutė Grybaitė, Rita Vaickelionienė, Alexey Smirnov, Tautvydas Kojis, Lina Baranauskiene, Elena Manakova, Saulius Gražulis, Asta Zubrienė, Daumantas Matulis, Vytautas Mickevičius and Vilma Petrikaitė
Int. J. Mol. Sci. 2025, 26(13), 6466; https://doi.org/10.3390/ijms26136466 - 4 Jul 2025
Viewed by 2395
Abstract
A series of novel derivatives of 3-amino-4-hydroxybenzenesulfonamide was synthesized. As the analyzed compounds possess a sulfonamide group, the affinity of these compounds for human carbonic anhydrases (CAs) was measured by fluorescent thermal shift assay, and compound selectivity for different isoenzymes was identified. The [...] Read more.
A series of novel derivatives of 3-amino-4-hydroxybenzenesulfonamide was synthesized. As the analyzed compounds possess a sulfonamide group, the affinity of these compounds for human carbonic anhydrases (CAs) was measured by fluorescent thermal shift assay, and compound selectivity for different isoenzymes was identified. The crystal structures of the complexes of compound 25 with CAI and CAII were determined. Additionally, the activity of compounds on the viability of three cancer cell lines—human glioblastoma U-87, triple-negative breast cancer MDA-MB-231, and prostate adenocarcinoma PPC-1—was established using the MTT assay and compared to CAIX-selective and non-selective comparative compounds U-104 and acetazolamide. The half-maximal concentration (EC50) was determined for the identified most active compounds, and their selectivity over fibroblasts was established. Compound 9 (inhibitor of multi-CAs) and compound 21 (not binding to CAs), considered the most promising candidates, were tested in cancer cell 3D cultures (cancer spheroids) by assessing their effect on spheroid growth and viability. Both compounds reduced the viability of spheroids from all cancer cell lines. U-87 and PPC-1 spheroids became looser in the presence of compound 9, while the growth of MDA-MB-231 spheroids was slower compared to the control. Compound 21 reduced the growth of U-87 and MDA-MB-231 3D cultures, with no significant effect on PPC-1 spheroids. Full article
(This article belongs to the Special Issue New Players in the Research of Oxidative Stress and Cancer)
Show Figures

Figure 1

25 pages, 455 KB  
Review
A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy
by Xiaole Li, Michael Balas and David J. Mathew
J. Clin. Transl. Ophthalmol. 2025, 3(1), 2; https://doi.org/10.3390/jcto3010002 - 23 Jan 2025
Cited by 4 | Viewed by 12215
Abstract
Glaucoma, the second leading cause of irreversible blindness globally, encompasses a heterogeneous group of ocular disorders characterized by the progressive degeneration of retinal ganglion cells. Pharmacotherapy remains the cornerstone of treatment, primarily aimed at reducing intraocular pressure (IOP) by decreasing aqueous humor production [...] Read more.
Glaucoma, the second leading cause of irreversible blindness globally, encompasses a heterogeneous group of ocular disorders characterized by the progressive degeneration of retinal ganglion cells. Pharmacotherapy remains the cornerstone of treatment, primarily aimed at reducing intraocular pressure (IOP) by decreasing aqueous humor production or enhancing its outflow. The therapeutic classes employed include carbonic anhydrase inhibitors, β-blockers, α-adrenergic agonists, prostaglandin analogs, parasympathomimetics, Rho kinase inhibitors, and hyperosmotic agents. Despite their efficacy, these medications are associated with a range of ocular and systemic side effects, influenced by their mechanisms of action, formulation, and dosage. Ocular adverse effects, such as irritation, dry eye, allergic reactions, and infections, are common, while systemic absorption may lead to more severe outcomes, including organ dysfunction, exacerbation of comorbid conditions, or life-threatening cardiovascular events. Given these potential risks, it is critical for clinicians to understand and monitor these adverse effects as they significantly affect patient adherence, quality of life, and treatment outcomes. Ongoing research is essential to develop novel therapeutic regimens, agents, or delivery methods that minimize side effects and improve compliance. Incorporating patient-reported outcomes in clinical practice may further enhance the assessment of treatment impact, facilitating more tailored and effective management of glaucoma. Full article
13 pages, 9629 KB  
Article
Heterologous Expression and Functional Verification of Extracellular Carbonic Anhydrases in Bacillus safensis yw6 from Mariana Trench
by Xinyu Wang, Pengna Wang, Hancheng Zhao, Yingying He, Changfeng Qu and Jinlai Miao
Molecules 2024, 29(24), 5911; https://doi.org/10.3390/molecules29245911 - 14 Dec 2024
Viewed by 1338
Abstract
The exploration and exploitation of deep-sea microbial resources is of great scientific value for understanding biological evolution under extreme conditions. Deep-sea microorganisms are critical in the ocean carbon cycle, and marine heterotrophic microorganisms secrete extracellular carbonic anhydrase (CA) to fix inorganic carbon, an [...] Read more.
The exploration and exploitation of deep-sea microbial resources is of great scientific value for understanding biological evolution under extreme conditions. Deep-sea microorganisms are critical in the ocean carbon cycle, and marine heterotrophic microorganisms secrete extracellular carbonic anhydrase (CA) to fix inorganic carbon, an important process in climate regulation. Extracellular CA provides a green method for fixing carbon dioxide into stable minerals containing Ca2+. However, studies on extracellular CA in deep-sea microorganisms are limited. In this study, Bacillus safensis yw6 was isolated from Mariana Trench sediments and three candidate extracellular CA genes (β-ca1, β-ca2, and γ-ca) were identified by whole genome sequencing. Bioinformatics analyses showed that these CAs have different structural compositions, with the β-CA having α-helix and random coiling, whereas the γ-CA has more random coiling and stretched strands. Heterologous expression in E. coli BL21 (DE3) showed that β-CA2 had the highest enzyme activity, followed by γ-CA and β-CA1. Field emission scanning electron microscopy (FESEM) observations showed that the engineered strains with β-ca2 genes produced deposits that were like those from natural sources. This finding not only provides new perspectives for the utilization of deep-sea microbial resources, but also provides an important scientific basis for the molecular mechanisms of extracellular CAs of deep-sea microbes. Full article
Show Figures

Figure 1

14 pages, 2038 KB  
Article
Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium
by Viviana De Luca, Simone Giovannuzzi, Clemente Capasso and Claudiu T. Supuran
Int. J. Mol. Sci. 2024, 25(22), 12291; https://doi.org/10.3390/ijms252212291 - 15 Nov 2024
Cited by 4 | Viewed by 2150
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.2.1.1), [...] Read more.
Acinetobacter baumannii is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.2.1.1), which are enzymes critical for various metabolic processes. The genome of A. baumannii encodes a β-CA (βAbauCA), which is essential for producing bicarbonate ions required in the early stages of uridine triphosphate (UTP) synthesis, a precursor for the synthesis of peptidoglycans, which are vital components of the bacterial cell wall. This study aimed to inhibit βAbauCA in vitro, with the potential to impair the vitality of the pathogen in vivo. We conducted sequence and structural analyses of βAbauCA to explore its differences from those of human CAs. Additionally, kinetic and inhibition studies were performed to investigate the catalytic efficiency of βAbauCAβ and its interactions with sulfonamides and their bioisosteres, classical CA inhibitors. Our results showed that βAbauCA has a turnover rate higher than that of hCA I but lower than that of hCA II and displays distinct inhibition profiles compared to human α-CAs. Based on the obtained data, there are notable differences between the inhibition profiles of the human isoforms CA I and CA II and bacterial βAbauCA. This could open the door to designing inhibitors that selectively target bacterial β-CAs without affecting human α-CAs, as well as offer a novel strategy to weaken A. baumannii and other multidrug-resistant pathogens. Full article
Show Figures

Figure 1

2223 KB  
Proceeding Paper
In Silico Assessment of Enaminone–Sulfanilamides as Potential Carbonic Anhydrase II Inhibitors: Molecular Docking and ADMET Prediction
by Yousra Ouafa Bouone, Abdeslem Bouzina, Rachida Mansouri and Nour-Eddine Aouf
Chem. Proc. 2024, 16(1), 117; https://doi.org/10.3390/ecsoc-28-20211 - 14 Nov 2024
Viewed by 473
Abstract
Carbonic anhydrases (CAs) are a group of zinc-containing enzymes involved in many physiological processes through their role in the maintenance of the equilibrium between bicarbonate and CO2 levels. Human carbonic anhydrases (hCAs) are recognized as important drug targets due to their major [...] Read more.
Carbonic anhydrases (CAs) are a group of zinc-containing enzymes involved in many physiological processes through their role in the maintenance of the equilibrium between bicarbonate and CO2 levels. Human carbonic anhydrases (hCAs) are recognized as important drug targets due to their major implication in the development of diseases including cancer. Sulfanilamide derivatives have been widely studied and have shown remarkable efficiency in inhibiting carbonic anhydrases, with the presence of SO2NH2 in their structure. Therefore, the sulfonamide moiety is considered as the leading scaffold in the search for new hCA inhibitors. Moreover, the introduction of an enaminone to sulfonamide-based CA inhibitors showed an enhancement of inhibitory activity. In this context, we were interested in the in silico investigation of benzenesulfonamide derivatives containing β-enaminone that were synthesized from dicarbonyl compounds and sulfanilamide under microwave irradiation. The in silico assessment includes a molecular docking simulation against hCA II (PDB: 2AW1). The docked ligands showed good docking score values (−8.099 and −7.053 kcal.mol−1), which indicates a good stability of the studied compounds within the active site. Further, significant interactions with the residues of the active site were observed, including metal coordination with Zn 262, an H-bond with Thr 199, and pi–pi stacking with the side chain of His94, which are considered as the key interactions for CA inhibition. A complementary in silico study that involved ADMET prediction was performed to learn more about the pharmacokinetic properties and the toxicity of the products in order to comprehend their ability to become drug-candidates. Full article
Show Figures

Figure 1

11 pages, 2529 KB  
Article
Synthesis and Evaluation of 5-(Heteroarylmethylene)hydantoins as Glycogen Synthase Kinase-3β Inhibitors
by Nicholas O. Schneider, Kendra Gilreath, Daniel J. Burkett, Martin St. Maurice and William A. Donaldson
Pharmaceuticals 2024, 17(5), 570; https://doi.org/10.3390/ph17050570 - 29 Apr 2024
Viewed by 2898
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule [...] Read more.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule inhibitors of GSK-3 have been reported. Phenylmethylene hydantoins are known to exhibit a wide range of inhibitory activities including for GSK-3β. A family of fourteen 2-heterocycle substituted methylene hydantoins (14, 1729) were prepared and evaluated for the inhibition of GSK-3β at 25 μM. The IC50 values of five of these compounds was determined; the two best inhibitors are 5-[(4′-chloro-2-pyridinyl)methylene]hydantoin (IC50 = 2.14 ± 0.18 μM) and 5-[(6′-bromo-2-pyridinyl)methylene]hydantoin (IC50 = 3.39 ± 0.16 μM). The computational docking of the compounds with GSK-3β (pdb 1q41) revealed poses with hydrogen bonding to the backbone at Val135. The 5-[(heteroaryl)methylene]hydantoins did not strongly inhibit other metalloenzymes, demonstrating poor inhibitory activity against matrix metalloproteinase-12 at 25 μM and against human carbonic anhydrase at 200 μM, and were not inhibitors for Staphylococcus aureus pyruvate carboxylase at concentrations >1000 μM. Full article
(This article belongs to the Special Issue Nitrogen Containing Scaffolds in Medicinal Chemistry 2023)
Show Figures

Figure 1

10 pages, 1290 KB  
Article
Changes in Paraoxonase, β-Glucosidase, and Carbonic Anhydrase Enzymes Related to Age and Scopolamine-Induced Memory Impairment in Rats
by Hatice Yildirim, Elif Aksöz, Burcu Efe Daşkan, Fazilet Şen and Murat Çelebi
Appl. Sci. 2024, 14(6), 2582; https://doi.org/10.3390/app14062582 - 19 Mar 2024
Viewed by 1362
Abstract
This study aimed to investigate the changes in Paraoxonase (PON), Carbonic Anhydrase (CA), and β-glucosidase levels of different aged rats and scopolamine-induced memory impairment rats. This study used young, adult, and middle-aged male Wistar Albino rats. Scopolamine was administered as a single dose/multiple [...] Read more.
This study aimed to investigate the changes in Paraoxonase (PON), Carbonic Anhydrase (CA), and β-glucosidase levels of different aged rats and scopolamine-induced memory impairment rats. This study used young, adult, and middle-aged male Wistar Albino rats. Scopolamine was administered as a single dose/multiple doses and a Morris water maze (MWM) was used for spatial learning testing in rats. Enzyme-linked immunosorbent assays (ELISAs) were used to determine serum and liver PON and β-glucosidase levels. The CA enzyme activity was assayed following the hydration of CO2. As a result of the comparison of age-related and scopolamine-related changes in PON and β-glucosidase levels in liver and serum samples, no significant age-related and scopolamine-effective changes were observed in serum, while liver PON and liver β-glucosidase levels were found to change significantly. CA activity studies, on the other hand, showed that adults have the lowest CA activity compared to young and middle-aged groups and scopolamine inhibited CA activity in vivo. We found that adult rats modeled with memory impairment had statistically lower levels of liver PON and liver β-glucosidase. CA activity was also found to be significantly reduced. β-glucosidase and CA should be further investigated in terms of neurodegenerative disease risk factors, just like PON, whose importance has been determined by numerous studies in the literature. Full article
Show Figures

Figure 1

13 pages, 2862 KB  
Article
Benzothiadiazinone-1,1-Dioxide Carbonic Anhydrase Inhibitors Suppress the Growth of Drug-Resistant Mycobacterium tuberculosis Strains
by Silvia Bua, Alessandro Bonardi, Georgiana Ramona Mük, Alessio Nocentini, Paola Gratteri and Claudiu T. Supuran
Int. J. Mol. Sci. 2024, 25(5), 2584; https://doi.org/10.3390/ijms25052584 - 23 Feb 2024
Cited by 3 | Viewed by 2250
Abstract
2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of β-class CA isozymes. BTD derivatives show chemical features meeting the [...] Read more.
2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of β-class CA isozymes. BTD derivatives show chemical features meeting the criteria for a potent inhibition of β-class CA isozymes. Specifically, three β-CAs (MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobacterial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3, Ki = 15.1–2250 nM; MtCA2, Ki = 38.1–4480 nM) and with a significant selectivity ratio over the off-target human CAs I and II. A computational study was conducted to elucidate the compound structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid—standard reference drugs for Tuberculosis treatment. Full article
Show Figures

Figure 1

52 pages, 9198 KB  
Article
Theoretical Improvements in Enzyme Efficiency Associated with Noisy Rate Constants and Increased Dissipation
by Davor Juretić and Željana Bonačić Lošić
Entropy 2024, 26(2), 151; https://doi.org/10.3390/e26020151 - 9 Feb 2024
Cited by 3 | Viewed by 3005
Abstract
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni–uni [...] Read more.
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni–uni enzymes, which convert a single substrate into a single product. We added or multiplied random noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our results highlight the role of biological evolution in accelerating thermodynamic evolution. The catalytic performance of these enzymes is proportional to overall entropy production—the main parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed up the rate-limiting catalytic steps may profit from the described connection between kinetics and thermodynamics. Full article
(This article belongs to the Special Issue Entropy, Time and Evolution II)
Show Figures

Figure 1

23 pages, 8745 KB  
Article
Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules
by Huda R. M. Rashdan, Gharieb S. El-Sayyad, Ihsan A. Shehadi and Aboubakr H. Abdelmonsef
Molecules 2023, 28(22), 7491; https://doi.org/10.3390/molecules28227491 - 8 Nov 2023
Cited by 3 | Viewed by 2127
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (49) through its reaction [...] Read more.
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (49) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine–pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9’s antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds. Full article
Show Figures

Figure 1

13 pages, 2129 KB  
Article
Effects of Dietary Betaine on the Laying Performance, Antioxidant Capacity, and Uterus and Ovary Function of Laying Hens at the Late Stage of Production
by Feng Guo, Mengna Jing, Aaoyu Zhang, Jinfan Yi and Yanhong Zhang
Animals 2023, 13(20), 3283; https://doi.org/10.3390/ani13203283 - 20 Oct 2023
Cited by 9 | Viewed by 2731
Abstract
Betaine has been found to alleviate oxidative stress, inflammation, and apoptosis. However, whether dietary betaine can protect late-laying hens against these adverse effects is unknown. Here, 270 65-week-old Jinghong-1 laying hens were randomly divided into the Control, 0.1% Betaine, and 0.5% Betaine groups [...] Read more.
Betaine has been found to alleviate oxidative stress, inflammation, and apoptosis. However, whether dietary betaine can protect late-laying hens against these adverse effects is unknown. Here, 270 65-week-old Jinghong-1 laying hens were randomly divided into the Control, 0.1% Betaine, and 0.5% Betaine groups and fed a basal diet, 0.1%, and 0.5% betaine supplemented diet, respectively. The trial lasted for seven weeks. Birds that consumed 0.5% betaine laid more eggs with thicker eggshells. Accordingly, uterine reduced glutathione (GSH), glutathione peroxidase (GSH-PX), and ovarian superoxide dismutase (SOD) contents were increased. The uterine calcium ion content and the mRNA expression of ovalbumin, ovotransferrin, and carbonic anhydrase two were increased. Moreover, ovarian IL-1β, Caspase-1, Caspase-8, and Caspase-9 mRNA expressions were decreased; luteinising hormone receptor (LHR) and follicle-stimulating hormone receptor mRNA expressions were increased. Furthermore, dietary betaine decreased the ovaries’ mRNA expression of DNA methyltransferase 1 (DNMT)1, DNMT3a, and DNMT3b. The methylation level at the promoter region of ovarian LHR decreased. These results indicated that dietary betaine consumption with a concentration of 0.5% could increase the laying rate and the eggshell thickness during the late-laying period. The underlying mechanism may include antioxidative, anti-apoptosis, and hormone-sensitivity-enhancing properties. Full article
(This article belongs to the Special Issue Sustainable Poultry Production: Physiology and Nutrition)
Show Figures

Figure 1

23 pages, 5331 KB  
Article
Antispasmodic Effect of Alstonia boonei De Wild. and Its Constituents: Ex Vivo and In Silico Approaches
by Opeyemi Josephine Akinmurele, Mubo Adeola Sonibare, Anthony A. Elujoba, Akingbolabo Daniel Ogunlakin, Oloruntoba Emmanuel Yeye, Gideon Ampoma Gyebi, Oluwafemi Adeleke Ojo and Abdullah R. Alanzi
Molecules 2023, 28(20), 7069; https://doi.org/10.3390/molecules28207069 - 13 Oct 2023
Cited by 5 | Viewed by 3024
Abstract
Background: Alstonia boonei, belonging to the family Apocynaceae, is one of the best-known medicinal plants in Africa and Asia. Stem back preparations are traditionally used as muscle relaxants. This study investigated the antispasmodic properties of Alstonia boonei Stem back and its constituents. [...] Read more.
Background: Alstonia boonei, belonging to the family Apocynaceae, is one of the best-known medicinal plants in Africa and Asia. Stem back preparations are traditionally used as muscle relaxants. This study investigated the antispasmodic properties of Alstonia boonei Stem back and its constituents. Method: The freeze-dried aqueous Stem back extract of A. boonei, as well as dichloromethane (DCM), ethyl acetate, and aqueous fractions, were evaluated for their antispasmodic effect via the ex vivo method. Two compounds were isolated from the DCM fraction using chromatographic techniques, and their antispasmodic activity was evaluated. An in silico study was conducted by evaluating the interaction of isolated compounds with human PPARgamma-LBD and human carbonic anhydrase isozyme. Results: The Stem back crude extract, DCM, ethyl acetate, and aqueous fractions showed antispasmodic activity on high-potassium-induced (K+ 80 mM) contractions on isolated rat ileum with IC50 values of 0.03 ± 0.20, 0.02 ± 0.05, 0.03 ± 0.14, and 0.90 ± 0.06 mg/mL, respectively. The isolated compounds from the DCM fraction were β-amyrin and boonein, with only boonein exhibiting antispasmodic activity on both high-potassium-induced (IC50 = 0.09 ± 0.01 µg/mL) and spontaneous (0.29 ± 0.05 µg/mL) contractions. However, β-amyrin had a stronger interaction with the two proteins during the simulation. Conclusion: The isolated compounds boonein and β-amyrin could serve as starting materials for the development of antispasmodic drugs. Full article
(This article belongs to the Special Issue Extraction and Application of Nutrients from Food)
Show Figures

Figure 1

16 pages, 4551 KB  
Article
Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells
by Leszek Rydz, Maria Wróbel, Klaudia Janik and Halina Jurkowska
Biomolecules 2023, 13(10), 1491; https://doi.org/10.3390/biom13101491 - 7 Oct 2023
Cited by 2 | Viewed by 2497
Abstract
This study was performed on human primary (WM115) and metastatic (WM266-4) melanoma cell lines developed from the same individual. The expression of proteins involved in L-cysteine metabolism (sulfurtransferases, and cystathionine β-synthase) and antioxidative processes (thioredoxin, thioredoxin reductase-1, glutathione peroxidase, superoxide dismutase 1) as [...] Read more.
This study was performed on human primary (WM115) and metastatic (WM266-4) melanoma cell lines developed from the same individual. The expression of proteins involved in L-cysteine metabolism (sulfurtransferases, and cystathionine β-synthase) and antioxidative processes (thioredoxin, thioredoxin reductase-1, glutathione peroxidase, superoxide dismutase 1) as well as the level of sufane sulfur, and cell proliferation under hypoxic conditions were investigated. Hypoxia in WM115 and WM266-4 cells was confirmed by induced expression of carbonic anhydrase IX and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 by the RT-PCR and Western blot methods. It was shown that, under hypoxic conditions the inhibition of WM115 and WM266-4 melanoma cell proliferation was associated with decreased expression of thioredoxin reductase-1 and cystathionine β-synthase. These two enzymes may be important therapeutic targets in the treatment of melanoma. Interestingly, it was also found that in normoxia the expression and activity of 3-mercaptopyruvate sulfurtransferase in metastatic WM266-4 melanoma cells was significantly higher than in primary melanoma WM115 cells. Full article
Show Figures

Figure 1

16 pages, 6018 KB  
Article
Genomic Analysis of Leptolyngbya boryana CZ1 Reveals Efficient Carbon Fixation Modules
by Xiaohui Bai, Honghui Wang, Wenbin Cheng, Junjun Wang, Mengyang Ma, Haihang Hu, Zilong Song, Hongguang Ma, Yan Fan, Chenyu Du and Jingcheng Xu
Plants 2023, 12(18), 3251; https://doi.org/10.3390/plants12183251 - 13 Sep 2023
Cited by 1 | Viewed by 2687
Abstract
Cyanobacteria, one of the most widespread photoautotrophic microorganisms on Earth, have evolved an inorganic CO2-concentrating mechanism (CCM) to adapt to a variety of habitats, especially in CO2-limited environments. Leptolyngbya boryana, a filamentous cyanobacterium, is widespread in a variety [...] Read more.
Cyanobacteria, one of the most widespread photoautotrophic microorganisms on Earth, have evolved an inorganic CO2-concentrating mechanism (CCM) to adapt to a variety of habitats, especially in CO2-limited environments. Leptolyngbya boryana, a filamentous cyanobacterium, is widespread in a variety of environments and is well adapted to low-inorganic-carbon environments. However, little is currently known about the CCM of L. boryana, in particular its efficient carbon fixation module. In this study, we isolated and purified the cyanobacterium CZ1 from the Xin’anjiang River basin and identified it as L. boryana by 16S rRNA sequencing. Genome analysis revealed that L. boryana CZ1 contains β-carboxysome shell proteins and form 1B of Rubisco, which is classify it as belonging to the β-cyanobacteria. Further analysis revealed that L. boryana CZ1 employs a fine CCM involving two CO2 uptake systems NDH-13 and NDH-14, three HCO3 transporters (SbtA, BicA, and BCT1), and two carboxysomal carbonic anhydrases. Notably, we found that NDH-13 and NDH-14 are located close to each other in the L. boryana CZ1 genome and are back-to-back with the ccm operon, which is a novel gene arrangement. In addition, L. boryana CZ1 encodes two high-affinity Na+/HCO3 symporters (SbtA1 and SbtA2), three low-affinity Na+-dependent HCO3 transporters (BicA1, BicA2, and BicA3), and a BCT1; it is rare for a single strain to encode all three bicarbonate transporters in such large numbers. Interestingly, L. boryana CZ1 also uniquely encodes two active carbonic anhydrases, CcaA1 and CcaA2, which are also rare. Taken together, all these results indicated that L. boryana CZ1 is more efficient at CO2 fixation. Moreover, compared with the reported CCM gene arrangement of cyanobacteria, the CCM-related gene distribution pattern of L. boryana CZ1 was completely different, indicating a novel gene organization structure. These results can enrich our understanding of the CCM-related gene arrangement of cyanobacteria, and provide data support for the subsequent improvement and increase in biomass through cyanobacterial photosynthesis. Full article
(This article belongs to the Special Issue Advances in Cyanobacterial Carbon Fixations and Assimilations)
Show Figures

Figure 1

17 pages, 2826 KB  
Article
Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis
by Shaoying Wang, Beibei Wen, Yun Yang, Shanshan Long, Jianjun Liu and Meifeng Li
Plants 2023, 12(17), 3039; https://doi.org/10.3390/plants12173039 - 24 Aug 2023
Cited by 1 | Viewed by 2385
Abstract
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are [...] Read more.
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, β-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis. Full article
Show Figures

Figure 1

Back to TopTop