Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = σ/π-hole theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15195 KB  
Article
XANES Absorption Spectra of Penta-Graphene and Penta-SiC2 with Different Terminations: A Computational Study
by Andrea Pedrielli, Tommaso Morresi and Simone Taioli
Appl. Sci. 2025, 15(17), 9812; https://doi.org/10.3390/app15179812 - 7 Sep 2025
Viewed by 734
Abstract
Pentagonal two-dimensional allotropes—penta-graphene (PG) and penta-SiC2—are promising but experimentally elusive materials whose identification requires spectroscopic fingerprints that extend beyond ground-state descriptors. Using density functional theory within a core-hole formalism and polarisation-resolved cross sections, we compute element- and site-resolved K-edge spectra for [...] Read more.
Pentagonal two-dimensional allotropes—penta-graphene (PG) and penta-SiC2—are promising but experimentally elusive materials whose identification requires spectroscopic fingerprints that extend beyond ground-state descriptors. Using density functional theory within a core-hole formalism and polarisation-resolved cross sections, we compute element- and site-resolved K-edge spectra for pristine H- and OH-terminated PG, Si-substituted PG, and pristine/H-passivated penta-SiC2. In PG, the C K-edge shows a π* onset at 285 eV from three-coordinated C and σ* bands at 293–303 eV, yielding three plateaus and a strong low-energy z-polarised response. The H/OH functionalisation suppresses the 283–288 eV plateau and weakens the polarisation anisotropy, which can be rationalised by PDOS changes at the two non-equivalent C sites. Si substitution generates a polarisation-dependent Si K-edge doublet (∼1844/1857 eV). In penta-SiC2, the high-energy Si feature broadens (1850–1860 eV) and the C K-edge becomes strongly anisotropic; H-passivation yields a sharp, almost polarisation-independent C K-edge at 290 eV. The presence of clearly resolved, system-dependent spectral features enables unambiguous experimental discrimination between phases and terminations, facilitating spectroscopic discovery and supporting device development in 2D pentagonal materials. Full article
(This article belongs to the Special Issue Development and Application of Computational Chemistry Methods)
Show Figures

Figure 1

15 pages, 2340 KB  
Article
Using Hybrid PDI-Fe3O4 Nanoparticles for Capturing Aliphatic Alcohols: Halogen Bonding vs. Lone Pair–π Interactions
by María de las Nieves Piña, Alberto León, Antonio Frontera, Jeroni Morey and Antonio Bauzá
Int. J. Mol. Sci. 2024, 25(12), 6436; https://doi.org/10.3390/ijms25126436 - 11 Jun 2024
Viewed by 1237
Abstract
In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. [...] Read more.
In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair–π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

26 pages, 16372 KB  
Article
Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist?
by Pradeep R. Varadwaj
Int. J. Mol. Sci. 2024, 25(9), 4587; https://doi.org/10.3390/ijms25094587 - 23 Apr 2024
Cited by 10 | Viewed by 2715
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which [...] Read more.
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Figure 1

24 pages, 8941 KB  
Review
“Noncovalent Interaction”: A Chemical Misnomer That Inhibits Proper Understanding of Hydrogen Bonding, Rotation Barriers, and Other Topics
by Frank Weinhold
Molecules 2023, 28(9), 3776; https://doi.org/10.3390/molecules28093776 - 27 Apr 2023
Cited by 13 | Viewed by 3293
Abstract
We discuss the problematic terminology of “noncovalent interactions” as commonly applied to hydrogen bonds, rotation barriers, steric repulsions, and other stereoelectronic phenomena. Although categorization as “noncovalent” seems to justify classical-type pedagogical rationalizations, we show that these phenomena are irreducible corollaries of the same [...] Read more.
We discuss the problematic terminology of “noncovalent interactions” as commonly applied to hydrogen bonds, rotation barriers, steric repulsions, and other stereoelectronic phenomena. Although categorization as “noncovalent” seems to justify classical-type pedagogical rationalizations, we show that these phenomena are irreducible corollaries of the same orbital-level conceptions of electronic covalency and resonance that govern all chemical bonding phenomena. Retention of such nomenclature is pedagogically misleading in supporting superficial dipole–dipole and related “simple, neat, and wrong” conceptions as well as perpetuating inappropriate bifurcation of the introductory chemistry curriculum into distinct “covalent” vs. “noncovalent” modules. If retained at all, the line of dichotomization between “covalent” and “noncovalent” interaction should be re-drawn beyond the range of quantal exchange effects (roughly, at the contact boundary of empirical van der Waals radii) to better unify the pedagogy of molecular and supramolecular bonding phenomena. Full article
Show Figures

Figure 1

17 pages, 4968 KB  
Article
Type I–IV Halogen⋯Halogen Interactions: A Comparative Theoretical Study in Halobenzene⋯Halobenzene Homodimers
by Mahmoud A. A. Ibrahim, Rehab R. A. Saeed, Mohammed N. I. Shehata, Muhammad Naeem Ahmed, Ahmed M. Shawky, Manal M. Khowdiary, Eslam B. Elkaeed, Mahmoud E. S. Soliman and Nayra A. M. Moussa
Int. J. Mol. Sci. 2022, 23(6), 3114; https://doi.org/10.3390/ijms23063114 - 14 Mar 2022
Cited by 37 | Viewed by 4235
Abstract
In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I–III interactions by means of the second-order Møller–Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, [...] Read more.
In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I–III interactions by means of the second-order Møller–Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, and I) were designed into four different types, parodying the considered interactions. From the energetic perspective, the preference of scouted homodimers was ascribed to type II interactions (i.e., highest binding energy), whereas the lowest binding energies were discerned in type III interactions. Generally, binding energies of the studied interactions were observed to decline with the decrease in the σ-hole size in the order, C6H5I⋯IC6H5 > C6H5Br⋯BrC6H5 > C6H5Cl⋯ClC6H5 homodimers and the reverse was noticed in the case of type IV interactions. Such peculiar observations were relevant to the ample contributions of negative-belt⋯negative-belt interactions within the C6H5Cl⋯ClC6H5 homodimer. Further, type IV torsional transcis interconversion of C6H5X⋯XC6H5 homodimers was investigated to quantify the π⋯π contributions into the total binding energies. Evidently, the energetic features illustrated the amelioration of the considered homodimers (i.e., more negative binding energy) along the prolonged scope of torsional transcis interconversion. In turn, these findings outlined the efficiency of the cis configuration over the trans analog. Generally, symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) demonstrated the predominance of all the scouted homodimers by the dispersion forces. The obtained results would be beneficial for the omnipresent studies relevant to the applications of halogen bonds in the fields of materials science and crystal engineering. Full article
(This article belongs to the Special Issue Non-covalent Interaction)
Show Figures

Graphical abstract

15 pages, 9971 KB  
Article
Ni Oxidation State and Ligand Saturation Impact on the Capability of Octaazamacrocyclic Complexes to Bind and Reduce CO2
by Barbora Vénosová, Ingrid Jelemenská, Jozef Kožíšek, Peter Rapta, Michal Zalibera, Michal Novotný, Vladimir B. Arion and Lukáš Bučinský
Molecules 2021, 26(14), 4139; https://doi.org/10.3390/molecules26144139 - 7 Jul 2021
Cited by 1 | Viewed by 3243
Abstract
Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while [...] Read more.
Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2− species also shows an affinity forwards CO2. Full article
Show Figures

Graphical abstract

17 pages, 2197 KB  
Article
Molecular Hydrogen as a Lewis Base in Hydrogen Bonds and Other Interactions
by Sławomir J. Grabowski
Molecules 2020, 25(14), 3294; https://doi.org/10.3390/molecules25143294 - 20 Jul 2020
Cited by 13 | Viewed by 3926
Abstract
The second-order Møller–Plesset perturbation theory calculations with the aug-cc-pVTZ basis set were performed for complexes of molecular hydrogen. These complexes are connected by various types of interactions, the hydrogen bonds and halogen bonds are most often represented in the sample of species analysed; [...] Read more.
The second-order Møller–Plesset perturbation theory calculations with the aug-cc-pVTZ basis set were performed for complexes of molecular hydrogen. These complexes are connected by various types of interactions, the hydrogen bonds and halogen bonds are most often represented in the sample of species analysed; most interactions can be classified as σ-hole and π-hole bonds. Different theoretical approaches were applied to describe these interactions: Quantum Theory of ‘Atoms in Molecules’, Natural Bond Orbital method, or the decomposition of the energy of interaction. The energetic, geometrical, and topological parameters are analysed and spectroscopic properties are discussed. The stretching frequency of the H-H bond of molecular hydrogen involved in intermolecular interactions is considered as a parameter expressing the strength of interaction. Full article
(This article belongs to the Special Issue Spectroscopic Aspects of Noncovalent Interactions)
Show Figures

Figure 1

15 pages, 2727 KB  
Article
Nitropyridine-1-Oxides as Excellent π-Hole Donors: Interplay between σ-Hole (Halogen, Hydrogen, Triel, and Coordination Bonds) and π-Hole Interactions
by Bartomeu Galmés, Antonio Franconetti and Antonio Frontera
Int. J. Mol. Sci. 2019, 20(14), 3440; https://doi.org/10.3390/ijms20143440 - 12 Jul 2019
Cited by 23 | Viewed by 5431
Abstract
In this manuscript, we use the primary source of geometrical information, i.e., Cambridge Structural Database (CSD), combined with density functional theory (DFT) calculations (PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro substituted pyridine-1-oxides. More importantly, we show that [...] Read more.
In this manuscript, we use the primary source of geometrical information, i.e., Cambridge Structural Database (CSD), combined with density functional theory (DFT) calculations (PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro substituted pyridine-1-oxides. More importantly, we show that the molecular electrostatic potential (MEP) value above and below the π–hole of the nitro group is largely influenced by the participation of the N-oxide group in several interactions like hydrogen-bonding (HB) halogen-bonding (XB), triel bonding (TrB), and finally, coordination-bonding (CB) (N+–O coordinated to a transition metal). The CSD search discloses that p-nitro-pyridine-1-oxide derivatives have a strong propensity to participate in π-hole interactions via the nitro group and, concurrently, N-oxide group participates in a series of interactions as electron donor. Remarkably, the DFT calculations show from strong to moderate cooperativity effects between π–hole and HB/XB/TrB/CB interactions (σ-bonding). The synergistic effects between π-hole and σ-hole bonding interactions are studied in terms of cooperativity energies, using MEP surface analysis and the Bader’s quantum theory of atoms in molecules (QTAIM). Full article
(This article belongs to the Special Issue Host-Guest Complexes)
Show Figures

Graphical abstract

11 pages, 26220 KB  
Article
Strength and Character of R–X···π Interactions Involving Aromatic Amino Acid Sidechains in Protein-Ligand Complexes Derived from Crystal Structures in the Protein Data Bank
by Kevin E. Riley and Khanh-An Tran
Crystals 2017, 7(9), 273; https://doi.org/10.3390/cryst7090273 - 8 Sep 2017
Cited by 20 | Viewed by 7881
Abstract
Here, we investigate the strengths of R–X···π interactions, involving both chlorine and bromine, in model systems derived from protein-ligand complexes found in the PDB. We find that the strengths of these interactions can vary significantly, with binding energies ranging from −2.01 to −3.60 [...] Read more.
Here, we investigate the strengths of R–X···π interactions, involving both chlorine and bromine, in model systems derived from protein-ligand complexes found in the PDB. We find that the strengths of these interactions can vary significantly, with binding energies ranging from −2.01 to −3.60 kcal/mol. Symmetry adapted perturbation theory (SAPT) analysis shows that, as would be expected, dispersion plays the largest role in stabilizing these R–X···π interactions, generally accounting for about 50% to 80% of attraction. R–Br···π interactions are, for the most part, found to be stronger than R–Cl···π interactions, although the relative geometries of the interacting pair and the halogen’s chemical environment can also have a strong impact. The two factors that have the strongest impact on the strength of these R–X···π interactions is the distance between the halogen and the phenyl plane as well as the size of the halogen σ-hole. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals)
Show Figures

Figure 1

28 pages, 3461 KB  
Article
Anion Recognition by Pyrylium Cations and Thio-, Seleno- and Telluro- Analogues: A Combined Theoretical and Cambridge Structural Database Study
by David Quiñonero
Molecules 2015, 20(7), 11632-11659; https://doi.org/10.3390/molecules200711632 - 24 Jun 2015
Cited by 11 | Viewed by 7076
Abstract
Pyrylium salts are a very important class of organic molecules containing a trivalent oxygen atom in a six-membered aromatic ring. In this manuscript, we report a theoretical study of pyrylium salts and their thio-, seleno- and telluro- analogues by means of DFT calculations. [...] Read more.
Pyrylium salts are a very important class of organic molecules containing a trivalent oxygen atom in a six-membered aromatic ring. In this manuscript, we report a theoretical study of pyrylium salts and their thio-, seleno- and telluro- analogues by means of DFT calculations. For this purpose, unsubstituted 2,4,6-trimethyl and 2,4,6-triphenyl cations and anions with different morphologies were chosen (Cl, NO3 and BF4). The complexes were characterized by means of natural bond orbital and “atoms-in-molecules” theories, and the physical nature of the interactions has been analyzed by means of symmetry-adapted perturbation theory calculations. Our results indicate the presence of anion-π interactions and chalcogen bonds based on both σ- and π-hole interactions and the existence of very favorable σ-complexes, especially for unsubstituted cations. The electrostatic component is dominant in the interactions, although the induction contributions are important, particularly for chloride complexes. The geometrical features of the complexes have been compared with experimental data retrieved from the Cambridge Structural Database. Full article
(This article belongs to the Special Issue Noncovalent pi-Interactions)
Show Figures

Graphical abstract

Back to TopTop