Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ARRDC1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1927 KB  
Article
Histological and Transcriptomic Profiling Reveals Metabolic and Immune Responses to Ammonia Stress in Scatophagus argus
by Haixin Xu, Zitao Zhang, Honggeng Zhu, Qisheng Xu, Shihu Li and Jianhua Chen
Fishes 2025, 10(8), 412; https://doi.org/10.3390/fishes10080412 - 15 Aug 2025
Cited by 1 | Viewed by 615
Abstract
Ammonia is widely regarded as the primary chemical pollutant responsible for fish toxicity in aquaculture. Scatophagus argus is an economically important euryhaline species extensively cultured in marine aquaculture. To investigate its physiological responses and molecular mechanisms under ammonia exposure, we determined the 96 [...] Read more.
Ammonia is widely regarded as the primary chemical pollutant responsible for fish toxicity in aquaculture. Scatophagus argus is an economically important euryhaline species extensively cultured in marine aquaculture. To investigate its physiological responses and molecular mechanisms under ammonia exposure, we determined the 96 h median lethal concentration (LC50-96 h) of total ammonia nitrogen (TAN) for S. argus juveniles. Histopathological analyses were conducted at TAN concentrations of 0 (control), 30, and 60 mg/L, with transcriptomic analysis performed at 0 and 60 mg/L. The results showed that the LC50-96 h for S. argus was 59.43 mg/L. Histological analysis revealed lamellar epithelial detachment and hepatocyte vacuolization in S. argus exposed to 60 mg/L TAN, indicating substantial structural impairment under ammonia stress. Transcriptomic profiling identified 245 differentially expressed genes (DEGs), comprising 142 upregulated and 103 downregulated genes. KEGG enrichment analysis indicated that DEGs were primarily enriched in energy metabolism and immune-related pathways. Key genes involved in glucose metabolism, amino acid metabolism, and cellular regulation (e.g., PFKM, PGM1, MAT2A, DDIT4) were significantly upregulated in energy metabolism pathways. In immune-related pathways, immune regulatory genes such as GIMAP4 and ARRDC3 were upregulated, while NAMLAA, associated with inflammatory modulation, was downregulated. Collectively, these transcriptional changes suggest that S. argus responds to external ammonia stress through coordinated regulation of energy metabolism and immune function. This study provides novel insights into the physiological and molecular strategies employed by S. argus in response to ammonia toxicity, offering a reference for environmental risk assessment and aquaculture management. Full article
Show Figures

Figure 1

21 pages, 9690 KB  
Article
Comparative Transcriptomic Analysis for Identification of Environmental-Responsive Genes in Seven Species of Threadfin Breams (Nemipterus)
by Zhaoke Dang, Qiaer Wu, Yanbo Zhou, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Shengwei Ma and Binbin Shan
Int. J. Mol. Sci. 2025, 26(15), 7118; https://doi.org/10.3390/ijms26157118 - 23 Jul 2025
Viewed by 852
Abstract
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying [...] Read more.
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying water depths. In this study, we sequenced seven species within the genus Nemipterus after identifying the specimens using complementary morphological analysis and DNA barcoding. Each species yielded over 40,000,000 clean reads, totaling over 300,000,000 clean reads across the seven species. A total of 276,389 unigenes were obtained after de novo assembly and a total of 168,010 (60.79%) unigenes were annotated in the protein database. The comprehensive functional annotation based on the KOG, GO, and KEGG databases revealed that these unigenes are mainly associated with numerous physiological, metabolic, and molecular processes, and that the seven species exhibit similarity in these aspects. By constructing a phylogenetic tree and conducting divergence time analysis, we found that N. bathybius and N. virgatus diverged most recently, approximately during the Neogene Period (14.9 Mya). Compared with other species, N. bathybius and N. virgatus are distributed in deeper water layers. Therefore, we conducted selection pressure analysis using these two species as the foreground branches and identified several environmental-responsive genes. The results indicate that genes such as aqp1, arrdc3, ISP2, Hip, ndufa1, ndufa3, pcyt1a, ctsk, col6a2, casp2 exhibit faster evolutionary rates during long-term adaptation to deep-water environments. Specifically, these genes are considered to be associated with adaptation to aquatic osmoregulation, temperature fluctuations, and skeletal development. This comprehensive analysis provides valuable insights into the evolutionary biology and environmental adaptability of threadfin breams, contributing to the conservation and sustainable management of these species. Full article
Show Figures

Figure 1

17 pages, 3818 KB  
Article
Preliminary Study of Differential circRNA Expression and Investigation of circRNA–miRNA–mRNA Competitive Endogenous Network in Rumen Acidosis of Holstein Cattle
by Saeid Neysi, Jamal Fayazi, Hedayatollah Roshanfekr and Ikhide G. Imumorin
Animals 2025, 15(10), 1472; https://doi.org/10.3390/ani15101472 - 19 May 2025
Viewed by 723
Abstract
Rumen acidosis is a widespread digestive disorder in livestock, causing inflammation and lowering animal performance. Unraveling its molecular mechanisms is vital for improving cattle health and welfare. Circular RNAs (circRNAs) are noncoding RNAs functioning as miRNA or protein sponges. This study employed high-throughput [...] Read more.
Rumen acidosis is a widespread digestive disorder in livestock, causing inflammation and lowering animal performance. Unraveling its molecular mechanisms is vital for improving cattle health and welfare. Circular RNAs (circRNAs) are noncoding RNAs functioning as miRNA or protein sponges. This study employed high-throughput RNA sequencing to identify differentially expressed (DE) circRNAs in subacute rumen acidosis (SARA) in Holstein cattle, revealing 65 DE-circRNAs. We constructed a competitive endogenous RNA (ceRNA) network comprising 57 circRNAs, 14 miRNAs, and 22 mRNAs. Key hub nodes included circRNAs (8:69996068-69996853, 16:2614111-2615445, 5:109525933-109531380, 20:63115665-63116774), miRNAs (bta-miR-146b, bta-miR-181a, bta-miR-223, bta-miR-130b), and mRNAs (SLC2A3, SOCS3, DLC1, ARRDC4). Examination of hub circRNA host genes identified 30 DE transcription factors (TFs). Functional and pathway enrichment analysis pinpointed inflammation and immune response pathways, such as NF-kappa B and TNF signaling. This pioneering study offers the first circRNA expression profile and ceRNA network in SARA cattle, indicating circRNAs’ role in inflammation regulation, thus enhancing our understanding of SARA’s systems biology and potential treatment strategies. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
Show Figures

Figure 1

13 pages, 5060 KB  
Article
Fusion with ARRDC1 or CD63: A Strategy to Enhance p53 Loading into Extracellular Vesicles for Tumor Suppression
by Min Liu, Yu Zhang, Jianfeng He, Wanxi Liu, Zhexuan Li, Yiti Zhang, Ao Gu, Mingri Zhao, Mujun Liu and Xionghao Liu
Biomolecules 2024, 14(5), 591; https://doi.org/10.3390/biom14050591 - 16 May 2024
Cited by 5 | Viewed by 3038
Abstract
Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing [...] Read more.
Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1–p53 (ARP) or CD63–p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment. Full article
(This article belongs to the Topic Extracellular Vesicles in Cancer Diagnosis and Treatment)
Show Figures

Figure 1

12 pages, 796 KB  
Article
Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars
by Henry Reyer, Ibrahim Abou-Soliman, Martin Schulze, Hubert Henne, Norbert Reinsch, Jennifer Schoen and Klaus Wimmers
Genes 2024, 15(3), 382; https://doi.org/10.3390/genes15030382 - 20 Mar 2024
Cited by 8 | Viewed by 3272
Abstract
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen [...] Read more.
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen characteristics. These traits comprise sperm morphology and sperm motility under different temporal and thermal storage conditions, in addition to standard semen quality parameters. Two consecutive samples of the fourth and fifth ejaculates from the same boar were comprehensively analyzed in a genotyped Piétrain boar population. A total of 13 genomic regions on different chromosomes were identified that contain single-nucleotide polymorphisms significantly associated with these traits. Subsequent analysis of the genomic regions revealed candidate genes described to be involved in spermatogenesis, such as FOXL3, GPER1, PDGFA, PRKAR1B, SNRK, SUN1, and TSPO, and sperm motility, including ARRDC4, CEP78, DNAAF5, and GPER1. Some of these genes were also associated with male fertility or infertility in mammals (e.g., CEP78, GPER1). The analyses based on these laboriously determined and valuable phenotypes contribute to a better understanding of the genetic background of male fertility traits in pigs and could prospectively contribute to the improvement of sperm quality through breeding approaches. Full article
(This article belongs to the Special Issue Advances in Pig Breeding and Genetics (Volume II))
Show Figures

Figure 1

14 pages, 3144 KB  
Article
Transcriptomic Changes in the Myocardium and Coronary Artery of Donation after Circulatory Death Hearts following Ex Vivo Machine Perfusion
by Lars Saemann, Kristin Wächter, Adrian-Iustin Georgevici, Sabine Pohl, Fabio Hoorn, Gábor Veres, Sevil Korkmaz-Icöz, Matthias Karck, Andreas Simm and Gábor Szabó
Int. J. Mol. Sci. 2024, 25(2), 1261; https://doi.org/10.3390/ijms25021261 - 19 Jan 2024
Cited by 4 | Viewed by 2178
Abstract
Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery [...] Read more.
Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery in DCD hearts after HCP and NBP have not been investigated yet. In a pig model, DCD hearts were harvested and maintained for 4 h by NBP (DCD-BP group, N = 8) or HCP with oxygenated histidine–tryptophane–ketoglutarate (HTK) solution (DCD-HTK, N = 8) followed by reperfusion with fresh blood for 2 h. In the DCD group (N = 8), hearts underwent reperfusion immediately after procurement. In the control group (N = 7), no circulatory death was induced. We performed transcriptomics from LV myocardial and left anterior descending (LAD) samples using microarrays (25,470 genes). We applied the Boruta algorithm for variable selection to identify relevant genes. In the DCD-BP group, compared to DCD, six genes were regulated in the myocardium and 1915 genes were regulated in the LAD. In the DCD-HTK group, 259 genes were downregulated in the myocardium and 27 in the LAD; and 52 genes were upregulated in the myocardium and 765 in the LAD, compared to the DCD group. We identified seven genes of relevance for group identification: ITPRIP, G3BP1, ARRDC3, XPO6, NOP2, SPTSSA, and IL-6. NBP resulted in the upregulation of genes involved in mitochondrial calcium accumulation and ROS production, the reduction in microvascular endothelial sprouting, and inflammation. HCP resulted in the downregulation of genes involved in NF-κB-, STAT3-, and SASP-activation and inflammation. Full article
(This article belongs to the Special Issue Recent Advances in the Molecular Biology of Transplantation)
Show Figures

Graphical abstract

13 pages, 4921 KB  
Article
Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study
by Hyein Seo, Jae-Ho Park, Jin-Taek Hwang, Hyo-Kyoung Choi, Soo-Hyun Park and Jangho Lee
Genes 2023, 14(12), 2207; https://doi.org/10.3390/genes14122207 - 13 Dec 2023
Cited by 5 | Viewed by 3311
Abstract
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung–Ansan (AS–AS) cohort. [...] Read more.
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung–Ansan (AS–AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

13 pages, 3360 KB  
Article
ARRDC4 and UBXN1: Novel Target Genes Correlated with Prostate Cancer Gleason Score
by Jong Jin Oh, Jin-Nyoung Ho and Seok-Soo Byun
Cancers 2021, 13(20), 5209; https://doi.org/10.3390/cancers13205209 - 17 Oct 2021
Cited by 4 | Viewed by 2751
Abstract
To investigate potential markers of the prostate cancer (PCa) Gleason score (GS), genetic arrays in 841 PCa patients were conducted followed by functional validation in PCa cell lines. A total of 841 PCa patients who received radical prostatectomy (RP) from November 2003 to [...] Read more.
To investigate potential markers of the prostate cancer (PCa) Gleason score (GS), genetic arrays in 841 PCa patients were conducted followed by functional validation in PCa cell lines. A total of 841 PCa patients who received radical prostatectomy (RP) from November 2003 to July 2019 were enrolled. HumanExome BeadChip 12v1-1 (Illumina, Inc.; San Diego, CA, USA) exomic arrays were performed on RP tissue samples. Unconditional logistic regression was used to calculate odds ratios to generate estimates of the relative risk of pathologic GS (≥8); SNPs with the highest association were selected and validated using PCa cell lines (PC3, LNCaP, 22Rv1 and DU145). Following transfection with target-gene siRNA, assays for cell viability, wound healing, and transwell invasion were performed. Mean age of enrolled subjects was 66.34 years and median PSA was 8.43 ng/mL. After RP, 122 patients (14.5%) had pathological Gleason scores ≥8. The results from genotyping with 242,186 SNPs by exomic array revealed that 4 SNPs (rs200944490, rs117555780, rs34625170, and rs61754877) were significantly associated with high pathological GS (≥8) within cut-off level to p < 10−5. The most highly associated rs200944490 in ARRDC4 (p = 1.39 × 10−6) and rs117555780 in UBXN1 (p = 2.92 × 10−5) were selected for further validation. The knockdown of UBXN1 and ARRDC4 led to significantly reduced cell proliferation and suppressed migration and invasiveness in PCa cell lines. Epithelial mesenchymal transition (EMT) markers were significantly down-regulated in si-ARRDC4 and si-UBXN1-transfected cells. The expression levels of PI3K-phosphorylation and Akt phosphorylation and NF-κB were also suppressed following knockdown of UBXN1 and ARRDC4. The rs200944490 (ARRDC4) and rs117555780 (UBXN1) were identified as candidate markers predictive of PCa Gleason score which is strongly associated with cancer aggressiveness. Additional validation in future studies is warranted. Full article
Show Figures

Figure 1

18 pages, 4970 KB  
Article
Therapeutic Potential of Chemically Modified miR-489 in Triple-Negative Breast Cancers
by Young Hwa Soung, Heesung Chung, Cecilia Yan, Andrew Fesler, Hyungjin Kim, Eok-Soo Oh, Jingfang Ju and Jun Chung
Cancers 2020, 12(8), 2209; https://doi.org/10.3390/cancers12082209 - 7 Aug 2020
Cited by 9 | Viewed by 3029 | Correction
Abstract
Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, [...] Read more.
Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-expression in TNBC cells. Among these tumor suppressing miRs, we found that miR-489 is most anti-proliferative in TNBC cells. miR-489 also blocked DNA damaging responses (DDRs) in TNBC cells. To define the mechanism by which miR-489 inhibits TNBC cell functions, we screened the potential target genes of miR-489 and identified MDC-1 and SUZ-12 as novel target genes of miR-489 in TNBC cells. To further exploit the therapeutic potentials of miR-489 in TNBC models, we chemically modified the guide strand of miR-489 (CMM489) by replacing Uracil with 5-fluorouracil (5-FU) so that tumor suppressor (miR-489) and DNA damaging (5-FU) components are combined into a single agent as a novel drug candidate for TNBCs. Our studies demonstrated that CMM489 shows superior effects over miR-489 or 5-FU in inhibition of TNBC cell proliferation and tumor progression, suggesting its therapeutic efficacy in TNBC models. Full article
Show Figures

Figure 1

14 pages, 4569 KB  
Article
Arrestin Domain Containing 3 Reverses Epithelial to Mesenchymal Transition and Chemo-Resistance of TNBC Cells by Up-Regulating Expression of miR-200b
by Young Hwa Soung, Heesung Chung, Cecilia Yan, Jingfang Ju and Jun Chung
Cells 2019, 8(7), 692; https://doi.org/10.3390/cells8070692 - 10 Jul 2019
Cited by 22 | Viewed by 3463
Abstract
Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its [...] Read more.
Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its target genes that are implicated in its metastatic suppressing activity. In this study, we used miRNA array and subsequent functional analyses to identify miRNAs whose expression are significantly regulated by ARRDC3 in TNBC cells. We identified miR-200b as a major target gene of ARRDC3. miR-200b played an essential role in mediating ARRDC3 dependent reversal of EMT phenotypes and chemo-resistance to DNA damaging agents in TNBC cells. Expression of miR-200b also increased the expression of ARRDC3 as well in TNBC cells, suggesting a positive feedback loop between these two molecules. In addition, we combined the therapeutic powers of miR-200b and 5-fluorourancil (5-FU) into a single compound (5-FU-miR-200b) to maximize the synergistic effects of these compounds. Chemically modified miR-200b (5-FU-miR-200b mimic) was more effective in inhibiting metastatic potentials of TNBC cells than unmodified miR-200b and does not require transfection reagents, implying its therapeutic potential in TNBC. Our studies showed the importance of therapeutic targeting ARRDC3/miR-200b pathway in TNBC. Full article
Show Figures

Figure 1

15 pages, 5771 KB  
Article
Meta-Analysis of Microarray Expression Studies on Metformin in Cancer Cell Lines
by Hans-Juergen Schulten and Sherin Bakhashab
Int. J. Mol. Sci. 2019, 20(13), 3173; https://doi.org/10.3390/ijms20133173 - 28 Jun 2019
Cited by 12 | Viewed by 5568
Abstract
Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified [...] Read more.
Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified eight eligible submissions, representing five different studies, that employed various conditions including different cell lines, MTF concentrations, treatment durations, and cellular components. A compilation of the data sets of 13 different conditions contained 443 repeatedly up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1), and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most significantly (p-value < 0.05, Fisher’s exact test) overrepresented protein class was entitled, nucleic acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism, cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised genes that were at least under one condition up- and in at least another condition down-regulated. Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript 1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and biofunctions related to in vitro MTF application and individual responses to different conditions. Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell cycle, and DNA replication, recombination, and repair. These findings can assist in defining the conditions in which MTF exerts additive or synergistic effects in cancer treatment. Full article
(This article belongs to the Special Issue Metformin: Mechanism and Application)
Show Figures

Figure 1

20 pages, 4835 KB  
Article
The Role of Arrestin Domain-Containing 3 in Regulating Endocytic Recycling and Extracellular Vesicle Sorting of Integrin β4 in Breast Cancer
by Young Hwa Soung, Shane Ford, Cecilia Yan and Jun Chung
Cancers 2018, 10(12), 507; https://doi.org/10.3390/cancers10120507 - 11 Dec 2018
Cited by 17 | Viewed by 4626
Abstract
Despite the established role of integrin β4 (ITG β4) in breast cancer progression, the importance of endocytic recycling of ITG β4 and its regulatory mechanism are poorly understood. Here, we found that a sub-population of ITG β4 is sorted into early endosomes, recycled [...] Read more.
Despite the established role of integrin β4 (ITG β4) in breast cancer progression, the importance of endocytic recycling of ITG β4 and its regulatory mechanism are poorly understood. Here, we found that a sub-population of ITG β4 is sorted into early endosomes, recycled back to the plasma membrane, and secreted in the form of extracellular vesicles (EVs) upon EGF treatment in triple negative breast cancer (TNBC) cells. A metastasis suppressor, ARRDC3 (arrestin domain-containing 3) prevents EGF-driven endocytic recycling of ITG β4 by inducing NEDD4-dependent ubiquitination of ITG β4 and targeting endosomal ITG β4 into lysosomes. Endocytic recycling of ITG β4 is linked to sorting of ITG β4 into EVs (ITG β4+ EVs). ITG β4+ EVs are mainly detectable from supernatants of TNBC cells and their production is inhibited by ARRDC3 expression. ARRDC3 reduces the metastatic potentials of breast cancer cell-derived EVs by reducing ITG β4 levels in EVs. Overall, current studies provide novel mechanistic insights on the regulatory mechanism of ITG β4 recycling, and its importance in invasive potentials of TNBC EVs, thus providing the basis for therapeutic targeting of the ARRDC3/ITG β4 pathway in TNBC. Full article
Show Figures

Figure 1

24 pages, 1638 KB  
Review
GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling
by Aleena K. S. Arakaki, Wen-An Pan and JoAnn Trejo
Int. J. Mol. Sci. 2018, 19(7), 1886; https://doi.org/10.3390/ijms19071886 - 27 Jun 2018
Cited by 73 | Viewed by 9845
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known [...] Read more.
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer. Full article
(This article belongs to the Special Issue Cancer-Driver G Protein-Coupled Receptors as Therapeutic Targets)
Show Figures

Graphical abstract

Back to TopTop