Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (919)

Search Parameters:
Keywords = Abl1 kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 43295 KB  
Article
NCIVISION: A Siamese Neural Network for Molecular Similarity Prediction MEP and RDG Images
by Rafael Campos Vieira, Letícia de A. Nascimento, Arthur Alves Nascimento, Nicolas Ricardo de Melo Alves, Érica C. M. Nascimento and João B. L. Martins
Molecules 2025, 30(23), 4589; https://doi.org/10.3390/molecules30234589 (registering DOI) - 28 Nov 2025
Viewed by 30
Abstract
Artificial neural networks in drug discovery have shown remarkable potential in various areas, including molecular similarity assessment and virtual screening. This study presents a novel multimodal Siamese neural network architecture. The aim was to join molecular electrostatic potential (MEP) images with the texture [...] Read more.
Artificial neural networks in drug discovery have shown remarkable potential in various areas, including molecular similarity assessment and virtual screening. This study presents a novel multimodal Siamese neural network architecture. The aim was to join molecular electrostatic potential (MEP) images with the texture features derived from reduced density gradient (RDG) diagrams for enhanced molecular similarity prediction. On one side, the proposed model is combined with a convolutional neural network (CNN) for processing MEP visual information. This data is added to the multilayer perceptron (MLP) that extracts texture features from gray-level co-occurrence matrices (GLCM) computed from RDG diagrams. Both representations converge through a multimodal projector into a shared embedding space, which was trained using triplet loss to learn similarity and dissimilarity patterns. Limitations associated with the use of purely structural descriptors were overcome by incorporating non-covalent interaction information through RDG profiles, which enables the identification of bioisosteric relationships needed for rational drug design. Three datasets were used to evaluate the performance of the developed model: tyrosine kinase inhibitors (TKIs) targeting the mutant T315I BCR-ABL receptor for the treatment of chronic myeloid leukemia, acetylcholinesterase inhibitors (AChEIs) for Alzheimer’s disease therapy, and heterodimeric AChEI candidates for cross-validation. The visual and texture features of the Siamese architecture help in the capture of molecular similarities based on electrostatic and non-covalent interaction profiles. Therefore, the developed protocol offers a suitable approach in computational drug discovery, being a promising framework for virtual screening, drug repositioning, and the identification of novel therapeutic candidates. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
17 pages, 1803 KB  
Review
Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation
by Federico Pierro, Stefania Stella, Manlio Fazio, Sabina Russo, Michele Massimino, Giuseppe Mirabile, Daniela Belletti, Alessandro Allegra and Fabio Stagno
Int. J. Mol. Sci. 2025, 26(23), 11285; https://doi.org/10.3390/ijms262311285 - 21 Nov 2025
Viewed by 540
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by both an abnormal expansion of the granuloblastic clone and the pathognomonic presence of the Philadelphia (Ph) chromosome that generates the BCR::ABL1 oncoprotein. Despite the surfacing of tyrosine kinase Inhibitors (TKIs) in 2001, which [...] Read more.
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by both an abnormal expansion of the granuloblastic clone and the pathognomonic presence of the Philadelphia (Ph) chromosome that generates the BCR::ABL1 oncoprotein. Despite the surfacing of tyrosine kinase Inhibitors (TKIs) in 2001, which changed the evolution of the disease, resistance due to point mutation or compound alteration during treatment with target therapy may occur. One of the mutations that is still an on-going challenge in clinical and scientific field is the T315I mutation, since it gives patients a poor prognosis attributable to acquired resistance to therapy. In the following narrative review, we will discuss the current knowledge on the T315I mutation, explore the most suitable treatment options, examine the role of third-generation tyrosine kinase inhibitors, and outline potential future therapeutic strategies. Full article
(This article belongs to the Special Issue Advancements in Hematology: Molecular Biology and Targeted Therapies)
Show Figures

Figure 1

19 pages, 4109 KB  
Article
Modulation of AMPK/NLRP3 Signaling Mitigates Radiation-Induced Lung Inflammation by a Synthetic Lipoxin A4 Analogue
by Sun Ho Min, Jae-Ho Shin, Sunjoo Park, Ronglan Cui, Youn Ji Hur, Woo Hyun Jeong, Sang Yeon Kim, Younghwa Na and Jaeho Cho
Int. J. Mol. Sci. 2025, 26(22), 10832; https://doi.org/10.3390/ijms262210832 - 7 Nov 2025
Viewed by 372
Abstract
Radiation-induced lung inflammation (RILI) is a major complication of thoracic radiotherapy, characterized by excessive inflammation and subsequent fibrosis that compromise pulmonary function and treatment outcomes. This study explores the pharmacological properties of a newly synthesized Lipoxin A4 analogue (CYNC-2) to mitigate RILI by [...] Read more.
Radiation-induced lung inflammation (RILI) is a major complication of thoracic radiotherapy, characterized by excessive inflammation and subsequent fibrosis that compromise pulmonary function and treatment outcomes. This study explores the pharmacological properties of a newly synthesized Lipoxin A4 analogue (CYNC-2) to mitigate RILI by modulating the AMP-activated protein kinase (AMPK)/NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome pathway. A murine RILI model was established in mice by delivering a single high-dose (ablative) X-ray irradiation to the left lung. Mice in the treatment group received CYNC-2 via tail-vein injection three times per week for 2 weeks. The effects of CYNC-2 on RILI were evaluated histological, immunohistochemical analysis of lung tissues, cytokine profiling, lung function testing using a FlexiVent system, and micro-computed tomography (micro-CT) imaging of lung damage. In parallel, two human lung cell lines—L132 (normal bronchial epithelial cells) and A549 (lung carcinoma cells)—were irradiated with 6 Gy X-rays and treated with CYNC-2 to assess cell viability and changes in AMPK/NLRP3 pathway markers via qPCR and immunofluorescence. Lung tissue sample from patients who underwent thoracic radiotherapy were also examined to validate key findings. CYNC-2 activated AMPK and inhibited mTOR signaling, which suppressed NLRP3 inflammasome activation and led to reduced secretion of pro-inflammatory cytokines (IL-1β, IL-6, and TGF-β1). In vitro, CYNC-2 mitigated radiation-induced inflammatory responses and preserved cellular viability. Overall, CYNC-2 effectively dampened acute pulmonary in the RILI model. These findings suggest that targeting the AMPK/NLRP3 inflammasome pathway via a stable LXA4 analogue such as CYNC-2 is a promising therapeutic strategy to improve clinical outcomes for patients receiving thoracic radiation therapy. Full article
Show Figures

Figure 1

31 pages, 1143 KB  
Review
Current Status of Molecularly Targeted Therapeutics in Blood Cancers
by Caitlin Kumala, Lynh Vu and Tamer E. Fandy
Int. J. Mol. Sci. 2025, 26(21), 10512; https://doi.org/10.3390/ijms262110512 - 29 Oct 2025
Viewed by 922
Abstract
Blood cancer is characterized by the uncontrolled growth of blood cells in the bone marrow or in the lymphatic system. Chemotherapy is still considered the first line of treatment in several types of blood cancer despite its adverse effects. Recent advances in understanding [...] Read more.
Blood cancer is characterized by the uncontrolled growth of blood cells in the bone marrow or in the lymphatic system. Chemotherapy is still considered the first line of treatment in several types of blood cancer despite its adverse effects. Recent advances in understanding the pathology and genomic changes in these cancers have led to the discovery of novel drug targets and the development of new therapeutic agents. In this review, we will discuss the mechanisms of action and clinical utility of several classes of targeted therapy used in blood cancers, including inhibitors of different types of tyrosine kinase enzymes (BCR-ABL, FLT3 and BTK), BCL-2 inhibitors, phosphoinositide 3-kinase inhibitors, nuclear export inhibitors, immune therapies (monoclonal antibodies, radioimmunoconjugates, chimeric antigen receptor T-cells, immune checkpoint inhibitors, and bispecific antibodies), and proteasome-dependent drugs (proteasome inhibitors and proteolysis targeting chimeras). Further advances in identifying distinct molecular subgroups in blood cancers will offer more opportunities for novel targeted therapies and more personalized medicine approaches. Full article
Show Figures

Figure 1

32 pages, 2453 KB  
Review
Natural Products Targeting BCR-ABL: A Plant-Based Approach to Chronic Myeloid Leukemia Treatment
by Louisa Pechlivani, Alexandros Giannakis, Chrissa Sioka, Georgios A. Alexiou and Athanassios P. Kyritsis
Molecules 2025, 30(21), 4160; https://doi.org/10.3390/molecules30214160 - 22 Oct 2025
Viewed by 842
Abstract
The BCR-ABL fusion oncoprotein, a constitutively active tyrosine kinase, plays a central role in the pathogenesis of chronic myeloid leukemia (CML). While tyrosine kinase inhibitors (TKIs) have transformed CML treatment, issues such as drug resistance, particularly involving mutations like T315I, and adverse effects [...] Read more.
The BCR-ABL fusion oncoprotein, a constitutively active tyrosine kinase, plays a central role in the pathogenesis of chronic myeloid leukemia (CML). While tyrosine kinase inhibitors (TKIs) have transformed CML treatment, issues such as drug resistance, particularly involving mutations like T315I, and adverse effects underscore the need for alternative or complementary therapeutic strategies. Natural products derived from plants have long served as a reservoir for anticancer agents, offering structural diversity and multi-targeted bioactivity. Notably, many plant-based compounds exhibit anticancer effects with comparatively lower toxicity and fewer side effects than synthetic TKIs, making them attractive candidates for safer long-term use. This review explores the recent advances in plant-based natural compounds that directly or indirectly inhibit BCR-ABL kinase activity and its downstream signaling pathways. Key compounds are discussed with respect to their mechanisms of action, structure–activity relationships, and potential to overcome TKI resistance. Several of these compounds directly target BCR-ABL or promote its degradation, while others inhibit downstream effectors such as STAT5 and PI3K/Akt, leading to apoptosis and growth inhibition of leukemic cells. The synergistic potential of these natural products with existing TKIs and their promise to target drug-resistant CML cells further highlight their translational value. By integrating insights from molecular pharmacology, medicinal chemistry, and leukemia biology, this review supports the continued investigation of plant-derived agents as novel or adjunctive therapies against BCR-ABL-driven leukemias. Full article
Show Figures

Figure 1

17 pages, 2139 KB  
Article
Under ONIOM Layers: Analysis of BCR-ABL Enzyme Inhibitors Through Bond-Critical Points and Natural Orbitals
by Kelvyn M. L. Rocha, Érica C. M. Nascimento and João B. L. Martins
Molecules 2025, 30(20), 4145; https://doi.org/10.3390/molecules30204145 - 21 Oct 2025
Viewed by 457
Abstract
Considering the relevance of hydrogen bonds and other intermolecular interactions in regulating the activity of the tyrosine kinase class of enzymes, an in-depth electronic structure study of these forces in the context of the BCR-ABL protein was performed through full optimizations using the [...] Read more.
Considering the relevance of hydrogen bonds and other intermolecular interactions in regulating the activity of the tyrosine kinase class of enzymes, an in-depth electronic structure study of these forces in the context of the BCR-ABL protein was performed through full optimizations using the ONIOM method. Rebastinib and ponatinib were docked to the target enzyme using AutoDock Vina to provide starting-point geometries, which were then optimized through ONIOM calculations. This study evaluated Frontier Molecular Orbitals (FMOs) and Bond-Critical Points (BCPs) located in the sites of interactions formed with accessible residues, such as Glu286, Met318, and Asp381. Ponatinib’s ONIOM-optimized structure was shown to not only form and preserve prominent interactions, which were shown to be significantly stronger than those formed by rebastinib, but also to be associated with a significant increase in the HOMO (Highest Occupied Molecular Orbital)−LUMO (Lowest Unoccupied Molecular Orbital) gap, indicating its potential to hinder catalytic activity by providing higher chemical stability when compared to rebastinib. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

18 pages, 3028 KB  
Article
Dual Targeting of Smoothened, a Key Regulator in the Hedgehog Pathway, and BCR-ABL1 Effectively Eradicates Drug-Insensitive Stem/Progenitor Cells in Chronic Myeloid Leukemia
by Kelly A. Turner, Min Chen, Katharina Rothe, Donna L. Forrest and Xiaoyan Jiang
Cells 2025, 14(19), 1565; https://doi.org/10.3390/cells14191565 - 9 Oct 2025
Viewed by 675
Abstract
Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. In particular, patients with chronic myeloid leukemia (CML) often require lifelong therapy with ABL1 tyrosine kinase inhibitors (TKIs), partly due to a persistent population of TKI-resistant leukemic stem cells [...] Read more.
Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. In particular, patients with chronic myeloid leukemia (CML) often require lifelong therapy with ABL1 tyrosine kinase inhibitors (TKIs), partly due to a persistent population of TKI-resistant leukemic stem cells (LSCs). Therefore, identifying specific pathways crucial for LSC maintenance is necessary. The Hedgehog (HH) pathway, especially the protein Smoothened (SMO), has been found to be essential for CML LSCs, but its role in TKI resistance is still largely unknown. We have now demonstrated that the expression of HH pathway genes SMO and GLI2 is increased in CD34+ CML stem/progenitor cells compared to healthy counterparts, and is higher in TKI-nonresponders than in responders by transcriptome profiling and qRT-PCR analysis. Interestingly, they are most highly expressed in LSCs compared to progenitors and mature cells in TKI-nonresponders. Inhibition of SMO through genetic knockdown or with a potent, selective SMO inhibitor, Glasdegib, reduces the survival of cells from nonresponder patients. Notably, SMO inhibition also sensitizes TKI-nonresponder stem/progenitor cells to Bostutinib, a second-generation TKI, both in vitro and in a patient-derived xenotransplantation (PDX) model. These findings present a promising therapeutic target and a model for curative combination therapies in stem-cell-driven cancers. Full article
(This article belongs to the Collection Cancer Stem Cells and Drug Resistance)
Show Figures

Graphical abstract

13 pages, 243 KB  
Review
The Evolving Role of Hematopoietic Stem Cell Transplantation in Philadelphia-like Acute Lymphoblastic Leukemia: From High-Risk Standard to Precision Strategies
by Matteo Molica, Claudia Simio, Laura De Fazio, Caterina Alati, Marco Rossi and Massimo Martino
Cancers 2025, 17(19), 3237; https://doi.org/10.3390/cancers17193237 - 5 Oct 2025
Viewed by 956
Abstract
Background: Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile similar to BCR::ABL1-positive leukemia, but lacking the BCR::ABL1 fusion gene. It is frequently associated with kinase-activating alterations, such as CRLF2 rearrangements, JAK-STAT pathway [...] Read more.
Background: Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile similar to BCR::ABL1-positive leukemia, but lacking the BCR::ABL1 fusion gene. It is frequently associated with kinase-activating alterations, such as CRLF2 rearrangements, JAK-STAT pathway mutations, and ABL-class fusions. Patients with Ph-like ALL typically experience poor outcomes with conventional chemotherapy, underscoring the need for intensified and targeted therapeutic approaches. Methods: This review summarizes current evidence regarding the role of hematopoietic stem cell transplantation (HSCT) in patients with Ph-like ALL. We analyzed retrospective cohort studies, registry data, and ongoing clinical trials, focusing on transplant indications, molecular risk stratification, measurable residual disease (MRD) status, timing of transplant, and post-transplant strategies. Results: Retrospective data suggest that HSCT in first complete remission (CR1) may improve survival in patients with high-risk molecular lesions or MRD positivity at the end of induction. However, the lack of prospective data specific to Ph-like ALL limits definitive conclusions. Post-transplant relapse remains a challenge, and novel strategies, including the use of tyrosine kinase inhibitors or JAK inhibitors as post-HSCT maintenance therapy, are being explored. Emerging immunotherapies, such as chimeric antigen receptor (CAR) T cells, may reshape the therapeutic landscape and potentially alter the indications for transplantation. Conclusions: HSCT remains a crucial therapeutic option for selected patients with Ph-like ALL, particularly those with poor molecular risk features or persistent MRD. However, further prospective studies are needed to evaluate the indication for HSCT in CR1 and the potential integration of transplantation with targeted and immunotherapeutic strategies. Personalized treatment approaches based on genomic profiling and MRD assessment are essential to improve outcomes in this high-risk subset. Full article
(This article belongs to the Special Issue Hematopoietic Stem Cell Transplant in Hematological Malignancies)
17 pages, 3218 KB  
Article
Antiviral Activity of Eugenol Against Largemouth Bass Ranavirus Through Regulation of Autophagy and Apoptosis In Vitro and In Vivo
by Yewen Wang, Lifang Cao, Leshan Ruan, Xingyu Chen, Chunhui Song, Shina Wei and Yunchang Xie
Microorganisms 2025, 13(10), 2281; https://doi.org/10.3390/microorganisms13102281 - 30 Sep 2025
Viewed by 532
Abstract
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and [...] Read more.
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and in vitro. Firstly, EUG demonstrated to be able to down-regulate both the mRNA and protein levels of the major capsid protein (MCP) in LMBV-infected cells. In addition, EUG could inhibit the expression of cleaved-caspase-3 in LMBV-infected fathead minnow (FHM) cell. On the other hand, EUG would not only directly regulate the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway but also affect the AMP-activated protein kinase (AMPK) pathway in FHM cells during LMBV infection. These results indicated that EUG exerts its antiviral effects by modulating both LMBV-induced apoptosis and autophagy. Notably, EUG reduced the viral load present within the tissues of LMBV-infected largemouth bass, thereby ultimately enhancing their survival rate in the culture environment by about 20%. These mechanistic assays revealed the anti-LMBV properties of EUG, which could significantly enrich the research content of plant extracts in the field of aquatic antiviral, and provide important theoretical basis for the development and application of related products. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 2042 KB  
Review
Src and Abl as Therapeutic Targets in Lung Cancer: Opportunities for Drug Repurposing
by Raquel Ramos, Carlos Sousa and Nuno Vale
Pharmaceuticals 2025, 18(10), 1426; https://doi.org/10.3390/ph18101426 - 23 Sep 2025
Viewed by 805
Abstract
Personalized medicine has gained an important relevance over the years with the development of targeted therapies, especially in cancer, adapted to the individual molecular tumour profiles. Accordingly, drug repurposing arises as a powerful strategy to identify and use drugs already approved for other [...] Read more.
Personalized medicine has gained an important relevance over the years with the development of targeted therapies, especially in cancer, adapted to the individual molecular tumour profiles. Accordingly, drug repurposing arises as a powerful strategy to identify and use drugs already approved for other conditions, offering advantages in terms of cost, development time, and safety. Src and Abl tyrosine kinases have been investigated as potential targets in oncology, being frequently implicated in tumour development and progression by promoting cell proliferation, migration, and angiogenesis. This review aims to provide a comprehensive overview of five tyrosine kinase inhibitors—saracatinib, imatinib, PP2, nilotinib and, tirbanibulin—that act on Src and/or Abl. Their mechanisms of action, original therapeutic indications, and potential for repurposing in other diseases, such as lung cancer, will be discussed. Although clinical data for these drugs in lung cancer remain limited, preclinical and clinical studies suggest promising therapeutic potential, particularly in specific molecular subtypes. Overall, this review highlights the therapeutic potential of Src and Abl inhibitors beyond their original contexts and supports their possible role in lung cancer therapy, considering the disease’s high heterogeneity and the growing applicability of personalized medicine. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

38 pages, 1281 KB  
Review
NUP214 in Acute Myeloid Leukemia
by Øystein Bruserud and Håkon Reikvam
Cells 2025, 14(18), 1461; https://doi.org/10.3390/cells14181461 - 18 Sep 2025
Viewed by 1174
Abstract
Nucleoporin 214 (NUP214) is a component of the nucleopore molecular complex, but in addition to this role in nucleocytoplasmic transport it is also involved in the regulation of gene transcription/translation, intracellular signaling, cell cycle progression and programmed cell death. Several uncommon translocations associated [...] Read more.
Nucleoporin 214 (NUP214) is a component of the nucleopore molecular complex, but in addition to this role in nucleocytoplasmic transport it is also involved in the regulation of gene transcription/translation, intracellular signaling, cell cycle progression and programmed cell death. Several uncommon translocations associated with acute myeloid leukemia (AML) involve the NUP214 gene, and the corresponding fusion proteins are involved in leukemic transformation. First, the t(6;9) translocation encodes the DEK-NUP214 fusion protein; this translocation is seen in 1–2% of AML patients and is associated with an adverse prognosis that is improved by allogeneic stem cell transplantation. Second, the SET-NUP214 fusion gene is less common in AML and is formed either by del(9)(q34.11q34.13) or a balanced t(9;9)(q34;q34). This AML variant shows several biological similarities with the DEK-NUP214 variant, but the possible prognostic impact of this fusion protein is not known. Finally, the NUP214-ABL1 and especially the NUP214-SQSTM1 fusions are very uncommon, and only a few case reports have been published. In this article, we review the functions of the genes/proteins formed by these fusion genes, the available studies of molecular mechanisms and biological functions for each fusion protein, the characteristics of the corresponding AML cells, the clinical characteristics of these patients and the possible prognostic impact of the fusion genes/proteins. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Leukemias)
Show Figures

Figure 1

9 pages, 634 KB  
Brief Report
Unveiling Cryptic BCR-ABL1 Rearrangements: Diagnostic Challenges and Clinical Impact in Myeloid Malignancies
by Anna Ferrari, Chiara Salvesi, Eugenio Fonzi, Barbara Giannini, Michela Tonelli, Irene Zacheo, Matteo Paganelli, Federico Lo Schiavo, Marco Rosetti, Giorgia Simonetti and Giovanni Marconi
Int. J. Mol. Sci. 2025, 26(18), 8812; https://doi.org/10.3390/ijms26188812 - 10 Sep 2025
Cited by 1 | Viewed by 841
Abstract
Chromosomal BCR-ABL1 fusions are the defining molecular lesions of chronic myeloid leukemia (CML) and Philadelphia-positive acute lymphoblastic leukemia, and are rarely observed in acute myeloid leukemia. Their detection have transformed treatment paradigms by enabling effective use of specific tyrosine kinase inhibitors (TKIs). Although [...] Read more.
Chromosomal BCR-ABL1 fusions are the defining molecular lesions of chronic myeloid leukemia (CML) and Philadelphia-positive acute lymphoblastic leukemia, and are rarely observed in acute myeloid leukemia. Their detection have transformed treatment paradigms by enabling effective use of specific tyrosine kinase inhibitors (TKIs). Although many BCR-ABL1 rearrangements are identified by standard cytogenetics, a clinically relevant subset is cryptic and can escape detection. High-depth RNA sequencing assays have improved our capacity to detect expressed fusion transcripts. Here, we introduce two myeloid cases in which cryptic BCR-ABL1 rearrangements and precise breakpoints detection required an integrated molecular approach: we describe the initial diagnostic pitfalls, detail the downstream therapeutic and prognostic implications and offer practical recommendations for integrating targeted sequencing and cytogenetics into routine practice. In the first case, a patient initially diagnosed with a myelodysplastic/myeloproliferative neoplasm was reclassified as CML following the discovery of a cryptic e13a2 BCR-ABL1 rearrangement, enabling effective TKI treatment. In the second case, a previously undetected BCR-ABL1 fusion was identified in a relapsed AML patient, along with additional molecular lesions, underscoring the aggressive nature of the disease. Our findings support a systematic, multimodal screening strategy in patients with atypical presentations to ensure the timely detection of clinically actionable fusion events. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Hematological Tumors)
Show Figures

Figure 1

18 pages, 4672 KB  
Article
Environmental Hazards and Chemoresistance in OTSCC: Molecular Docking and Prediction of Paclitaxel and Imatinib as BCL2 and EGFR Inhibitors
by Nishant Kumar Singh, Prankur Awasthi, Agrika Gupta, Nidhi Anand, Balendu Shekher Giri and Saba Hasan
Biology 2025, 14(9), 1174; https://doi.org/10.3390/biology14091174 - 2 Sep 2025
Viewed by 989
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is a common type of oral cancer influenced by genetic, epigenetic, and environmental factors like exposure to environmental toxins. These environmental toxins can decrease the effectiveness of established chemotherapy drugs, such as Irinotecan, used in OTSCC treatment. [...] Read more.
Oral tongue squamous cell carcinoma (OTSCC) is a common type of oral cancer influenced by genetic, epigenetic, and environmental factors like exposure to environmental toxins. These environmental toxins can decrease the effectiveness of established chemotherapy drugs, such as Irinotecan, used in OTSCC treatment. Bioinformatics, drug discovery, and machine learning techniques were employed to investigate the impact of Irinotecan on OTSCC patients by identifying targets and signaling pathways, including those that positively influence protein phosphorylation, protein tyrosine kinase activity, the PI3K-Akt (Phosphatidylinositol 3-kinase- Protein Kinase B) signaling system, cancer pathways, focal adhesion, and the HIF-1 (Hypoxia-Inducible Factor 1) signaling pathway. Later, the protein–protein interactions (PPIs) network, along with twelve cytoHubba approaches to finding the most interacting molecule, was employed to find the important proteins BCL2 and EGFR. Drugs related to BCL2 and EGFR were extracted from the DGIdb database for further molecular docking. Molecular docking revealed that Docetaxel, Paclitaxel, Imatinib, Ponatinib, Ibrutinib, Sorafenib, and Etoposide showed more binding affinity than Irinotecan (i.e., −9.8, −9.6). Of these, Paclitaxel (−10.3, −11.4) and Imatinib (−9.9, −10.4) are common in targeting BCL2 and EGFR. Using these identified candidate genes and pathways, we may be able to uncover new therapeutic targets for the treatment of OTSCC. Furthermore, molecular dynamics (MD) simulations were performed for selected ligand–receptor complexes, revealing stable binding interactions and favorable energetic profiles that supported the docking results and strengthened the reliability of the proposed drug repurposing strategy. Full article
(This article belongs to the Special Issue Head and Neck Cancer: Current Advances and Future Perspectives)
Show Figures

Graphical abstract

17 pages, 1625 KB  
Article
In Silico Identification of circPIM1/miR-16-5p/miR-195-5p/PIM1 Feed-Forward Loop in Recurrent Grade 2 Meningioma
by Giuseppe Sotera, Carla Forte, Daniele Giuseppe D’Urso, Domenica Reina, Noemi Zuccaro, Andrea Giuseppe Toscano, Angela Caponnetto, Cristina Barbagallo, Giuseppe Broggi, Francesco Certo, Marco Ragusa, Rosario Caltabiano, Cinzia Di Pietro, Giuseppe Maria Vincenzo Barbagallo, Michele Purrello and Davide Barbagallo
Int. J. Mol. Sci. 2025, 26(17), 8263; https://doi.org/10.3390/ijms26178263 - 26 Aug 2025
Viewed by 1140
Abstract
In bulk meningioma (MNG) tumors, a biomarker based on the expression of 34 transcripts (34HR-MNG) has recently been described to be able to predict their outcome, including recurrence. To better study the molecular mechanisms regulating the expression of the 34HR-MNG transcripts and predict [...] Read more.
In bulk meningioma (MNG) tumors, a biomarker based on the expression of 34 transcripts (34HR-MNG) has recently been described to be able to predict their outcome, including recurrence. To better study the molecular mechanisms regulating the expression of the 34HR-MNG transcripts and predict their functional involvement in MNG recurrence, we built a competitive endogenous RNA (ceRNA) network through an in silico approach. MiRNAs targeting 34HR-MNG transcripts and corresponding sponging circRNAs were retrieved through MiRTarbase and ENCORI databases, respectively. The expression of candidate circRNA host genes belonging to the 34HR-MNG transcripts was correlated with specific molecular and clinical features of 89 and 20 WHO grade 1 and 2 MNGs, respectively, by querying the RNA-seq dataset GSE189672. The expression of candidate circRNAs and their host gene was validated through qRT-PCR. Among the 34HR-MNG transcripts, the Pim-1 proto-oncogene, serine/threonine kinase (PIM1) was significantly upregulated in (i) WHO grade 2 vs. grade 1 and (ii) recurrent vs. not recurrent WHO grade 2 MNGs. PIM1 expression positively and negatively correlated with that of Ki-67 and NF2, respectively, in recurrent WHO grade 2 MNGs. CircRNAs 0076215 and 0076216, both generated from the PIM1 host gene, were predicted to sponge miRNAs 16-5p and 195-5p, two tumor suppressors in MNG, in turn targeting PIM1. The expression of circRNAs 0076215 and 0076216, validated for the first time in a set of 19 physiological human tissues, positively correlated with that of their host gene (Rho value = 0.579 and 0.681, p-value = 0.026 and 0.013, respectively). Our data suggest that PIM1 is an oncogene involved in the recurrence of WHO grade 2 MNG and that the upstream ceRNA network, comprising circRNAs 0076215 and 0076216 and miRNAs 16-5p and 195-5p, is responsible for its upregulation through a feed-forward loop. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Brain Tumors)
Show Figures

Figure 1

16 pages, 645 KB  
Review
Upfront Immunotherapy Approaches in the Management of Adults with Acute Lymphoblastic Leukemia
by Moazzam Shahzad, Muhammad Kashif Amin and Talha Badar
Cancers 2025, 17(17), 2746; https://doi.org/10.3390/cancers17172746 - 23 Aug 2025
Viewed by 1961
Abstract
The therapeutic landscape of adults with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is undergoing a paradigm shift, driven by the development of immunotherapy-based “chemo-free” and “chemo-light’ regimens. These strategies aim to achieve high efficacy with reduced toxicity, particularly in older adults who may [...] Read more.
The therapeutic landscape of adults with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is undergoing a paradigm shift, driven by the development of immunotherapy-based “chemo-free” and “chemo-light’ regimens. These strategies aim to achieve high efficacy with reduced toxicity, particularly in older adults who may not tolerate intensive chemotherapy. In Philadelphia chromosome-positive (Ph+) BCP-ALL, the incorporation of ABL tyrosine kinase inhibitors (TKIs) with blinatumomab (CD3/CD19 bispecific T-cell engager) has shown remarkable efficacy, with some studies reporting molecular response rates in the range of 90–100% and long-term survival exceeding 80% without the need for intensive chemotherapy or allogeneic hematopoietic cell transplantation (allo-HCT). In Philadelphia-negative (Ph−) BCP- ALL, an immunotherapy-based combination of blinatumomab and inotuzumab ozogamicin (anti-CD22 antibody-drug conjugate) has demonstrated high rates of complete remission and measurable residual disease (MRD) negativity, with manageable toxicity. While chimeric antigen receptor (CAR) T-cell therapy remains a transformative option for relapsed/refractory B-ALL, its integration into frontline treatment is still under investigation. Ongoing trials are evaluating the optimal sequencing and combinations of these agents and their potential to obviate the need for chemotherapy and/or allo-HCT in selected patients. As evidence continues to accumulate, chemo-free and chemo-light regimens, incorporating minimal chemotherapy with targeted agents to balance efficacy and reduced toxicity, are poised to redefine the standard of care for adults BCP-ALL, offering the possibility of durable remissions with reduced treatment-related morbidity. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop