Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (703)

Search Parameters:
Keywords = Al-Mg-Zn(-Cu)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 731 KB  
Article
Investigation and Health Risk Assessment of Potentially Toxic Elements in Hair-Dye Products Sold in Brazil and Paraguay
by Gelson Martins da Silva, Marta Aratuza Pereira Ancel, Regiane Santana da Conceição Ferreira Cabanha, Amanda Lucy Farias de Oliveira, Ana Carla Pinheiro Lima, Andréia Cristina Lopes Corrêa, Marcelo Luiz Brandão Vilela, Diego Azevedo Zoccal Garcia, Omar Dias Lacerda, Elaine Silva de Padua Melo, Ademir da Silva Alves Junior and Valter Aragão do Nascimento
Sci 2025, 7(4), 160; https://doi.org/10.3390/sci7040160 - 5 Nov 2025
Viewed by 685
Abstract
Hair dyes are widely used cosmetic products that can contain trace metals and metalloids, posing potential health risks through dermal exposure. This study aimed to assess and compare the concentrations of selected metals and metalloids in six brands of commercial hair dyes sold [...] Read more.
Hair dyes are widely used cosmetic products that can contain trace metals and metalloids, posing potential health risks through dermal exposure. This study aimed to assess and compare the concentrations of selected metals and metalloids in six brands of commercial hair dyes sold in Brazil and Paraguay and to evaluate their average daily dermal exposure doses, hazard quotients, hazard indices, and carcinogenic risk. Concentrations of Cr, Cd, Co, Cu, Fe, Mn, Mo, Ni, As, Al, Pb, Ba, Ag, and Zn in hair dye were quantified by standardized analytical methods. The Paraguayan brand showed the highest levels for several elements, including As (4.17 mg/kg), Al (130.276 mg/kg), and Fe (30.033 mg/kg). Estimated dermal exposure doses reached up to 3.35 × 10−6 mg/kg/day for arsenic, 1.68 × 10−3 mg/kg/day for aluminum, and 8.59 × 10−8 mg/kg/day for chromium. Although all hazard indices remained below 1, suggesting low non-carcinogenic risk, the calculated carcinogenic risk for arsenic in the Paraguayan product was 1.23 × 10−5, entering the medium-risk range. These findings highlight relevant differences in raw material control and potential cumulative health risks, especially for frequent users. Continuous quality control, harmonized regulatory standards, clear labeling, and further biomonitoring studies are strongly recommended to minimize long-term exposure to toxic elements in hair dye formulations and to ensure safer consumer products. Full article
Show Figures

Figure 1

21 pages, 6101 KB  
Article
The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion
by Ziren Wang, Jiazhi An, Mei Xu, Haixia Zhang, Guoli Wei, Chengliang Yang, Zhenpeng Wei, Wenzheng Shen and Wanwu Ding
Metals 2025, 15(11), 1167; https://doi.org/10.3390/met15111167 - 23 Oct 2025
Viewed by 302
Abstract
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit [...] Read more.
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit subsequent heat treatment and plastic processing. To overcome these drawbacks, this study systematically investigates the effects of the Continuous Rheo-Extrusion (CRE) process on the microstructure and mechanical performance of Al–Zn–Mg–Cu alloys using XRD, EBSD, SEM, and TEM analyses. The CRE process refines the average grain size from 53.5 μm to 16.1 μm and raises the fraction of high-angle grain boundaries to 88.8%. Moreover, coarse Fe-rich phases are fragmented to below 5 μm, while the elemental distribution of Zn, Mg, and Cu becomes more homogeneous, effectively reducing grain boundary segregation. The Al2Cu precipitates are refined from 106.3 nm to 11.7 nm, corresponding to an 88.9% size reduction. These microstructural optimizations yield a remarkable increase in tensile strength (from 204.7 ± 23.7 MPa to 338.0 ± 9.3 MPa) and elongation (from 11.4 ± 2.4% to 13.8 ± 1.3%). Quantitative analysis confirms that dislocation and precipitation strengthening are the dominant contributors to this improvement. Overall, the CRE process enhances microstructural uniformity through the synergistic effects of shear deformation, continuous dynamic recrystallization (CDRX), and dynamic precipitation, thereby providing a solid theoretical and practical foundation for short-process fabrication of high-strength, high-ductility Al–Zn–Mg–Cu alloys. Full article
Show Figures

Figure 1

31 pages, 5318 KB  
Review
Recent Advances in Doping and Polymer Hybridization Strategies for Enhancing ZnO-Based Gas Sensors
by Nazir Mustapha, Boutheina Ben Abdelaziz, Majdi Benamara and Mokhtar Hjiri
Nanomaterials 2025, 15(21), 1609; https://doi.org/10.3390/nano15211609 - 22 Oct 2025
Cited by 1 | Viewed by 525
Abstract
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, [...] Read more.
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, and suboptimal detection at low gas concentrations. To address these limitations, significant research efforts have focused on dopant incorporation and polymer hybridization. This review summarizes recent advances in dopant engineering using elements such as Al, Ga, Mg, In, Sn, and transition metals (Co, Ni, Cu), which modulate ZnO’s crystal structure, defect density, carrier concentration, and surface activity—resulting in enhanced gas adsorption and electron transport. Furthermore, ZnO–polymer nanocomposites (e.g., with polyaniline, polypyrrole, PEG, and chitosan) exhibit improved flexibility, surface functionality, and room-temperature responsiveness due to the presence of active functional groups and tunable porosity. The synergistic combination of dopants and polymers facilitates enhanced charge transfer, increased surface area, and stronger gas–molecule interactions. Where applicable, sol–gel-based studies are explicitly highlighted and contrasted with non-sol–gel routes to show how synthesis controls defect chemistry, morphology, and sensing metrics. This review provides a comprehensive understanding of the structure–function relationships in doped ZnO and ZnO–polymer hybrids and offers guidelines for the rational design of next-generation, low-power, and selective gas sensors for environmental and industrial applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 1832 KB  
Article
Integrated Monitoring of Water Quality, Metal Ions, and Antibiotic Residues, with Isolation and Optimization of Enrofloxacin-Degrading Bacteria in American Shad (Alosa sapidissima) Aquaculture Systems
by Yao Zheng, Jiajia Li, Ampeire Yona, Xiaofei Wang, Xue Li, Julin Yuan and Gangchun Xu
J. Xenobiot. 2025, 15(6), 174; https://doi.org/10.3390/jox15060174 - 22 Oct 2025
Viewed by 349
Abstract
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, [...] Read more.
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, and ENR-degrading bacteria were isolated from the culture environment to explore their potential use in bioremediation. Findings showed that NH3-N and total suspended solids (TSS) exceeded recommended standards at all sampling sites. Elevated levels of Li, Na (except S1), Fe, Ni (except S2 and S4), Sr, and Cu were found at site S3. Site S5 recorded the highest concentrations of Al, As, and Pb, while Cd was most abundant at S6. In sediments, S5 showed higher levels of Mg, K (except S3), Ca, Cr, Mn, Fe, Ni, As, Pb, Cu, and Zn (except S3). ENR and CIP were detected in all water and sediment samples, with a 100% detection rate. The highest ENR (16.68–3215.95 mg·kg−1) and CIP (3.90–459.60 mg·kg−1) concentrations in water occurred at site S6, following a seasonal pattern of autumn > winter > summer > spring. In sediments, the maximum ENR (41.43–133.67 mg·kg−1) and CIP (12.36–23.71 mg·kg−1) levels were observed in spring. Two ENR-degrading bacterial strains were successfully isolated and identified as Enterococcus and Bacillus. Optimal degradation was achieved at 30 °C, pH 8.0, 6% inoculum, and 3000 Lux, resulting in a 64.2% reduction in ENR after 72 h. Under slightly different conditions (25 °C, pH 10), degradation reached 58.5%. This study provides an efficient strain resource for the bioremediation of ENR pollution in the aquaculture water of American shad. Full article
Show Figures

Graphical abstract

18 pages, 2949 KB  
Article
Artificial Aggregates from Metallurgical Waste as a Potential Source of Groundwater and Soil Contamination
by Katarzyna Nowińska, Jacek Nowak, Aleksandra Bartyzel, Magdalena Kokowska-Pawłowska and Krzysztof Kuliński
Minerals 2025, 15(10), 1082; https://doi.org/10.3390/min15101082 - 17 Oct 2025
Viewed by 325
Abstract
Highly developed countries generate large volumes of industrial waste, the type and quantity of which are strongly linked to the characteristics of the industries that produce it. Industrial waste can adversely affect the environment, so its disposal and management are a major challenge. [...] Read more.
Highly developed countries generate large volumes of industrial waste, the type and quantity of which are strongly linked to the characteristics of the industries that produce it. Industrial waste can adversely affect the environment, so its disposal and management are a major challenge. Understanding the characteristics of a given waste type (e.g., its chemical and phase composition, technical parameters and likelihood of releasing constituents into aquatic and soil environments) allows its potential economic applications to be determined. A simple application of mineral waste is in the production of artificial aggregates, which are increasingly used as a substitute for natural aggregates. In Poland, artificial aggregates are widely produced from metallurgical waste from steel and non-ferrous metallurgy, which may contain numerous components that are potentially environmentally damaging. Depending on their occurrence form (i.e., mineral composition), these contaminants have varying potential to be released into aquatic and soil environments. This study presents the results of mineral and chemical composition analyses and leachability tests conducted on aggregates produced from metallurgical waste, including slags from blast furnaces, steelmaking, Zn and Pb production, and Ni production. The studied aggregates are characterised by chemical and phase composition differences, resulting from the type of slag from which they originate. The chemical composition of blast furnace slag is dominated by CaO, SiO2, Fe2O3, and MgO; steelmaking slag by CaO, Fe2O3, and SiO2; Zn and Pb production slag by SiO2, Fe2O3, SO3, and CaO; and Ni production slag by SiO2, Fe2O3, CaO, and Al2O3. The phase composition of all the tested aggregates is dominated by silicates resistant to leaching (weathering), which results in low levels of Al, Ca, Cr, Mn, Zn, Pb, Cu, As, Sr and Ni leaching, not exceeding 1.6%. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

17 pages, 9744 KB  
Article
Effect of Secondary Aging Conditions on Mechanical Properties and Microstructure of AA7150 Aluminum Alloy
by Fei Chen, Han Wang, Yanan Jiang, Yu Liu, Qiang Zhou and Quanqing Zeng
Materials 2025, 18(20), 4763; https://doi.org/10.3390/ma18204763 - 17 Oct 2025
Viewed by 401
Abstract
Al-Zn-Mg-Cu alloys are widely used as heat-treatable ultra-high-strength materials in aerospace structural applications. While conventional single-stage aging enables high strength, advanced performance demands call for precise microstructural control via multi-stage aging. In this study, we employ a combination of scanning transmission electron microscopy [...] Read more.
Al-Zn-Mg-Cu alloys are widely used as heat-treatable ultra-high-strength materials in aerospace structural applications. While conventional single-stage aging enables high strength, advanced performance demands call for precise microstructural control via multi-stage aging. In this study, we employ a combination of scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) to investigate the microstructural evolution and its correlation with mechanical properties of AA7150 aluminum alloy subjected to two-step aging treatments, following a 6 h pre-aging at 120 °C. Through atomic-scale STEM imaging along the [110]Al zone axis, we systematically characterize the precipitation behavior of GPII zones, η′ phases, and equilibrium η phases both within the grains and at grain boundaries under varying secondary aging (SA) conditions. Our results reveal that increasing the SA temperature from 140 °C to 180 °C leads to coarsening and reduced number density of intragranular precipitates, while promoting the continuous and coarse precipitation of η phases along grain boundaries, accompanied by a widening of the precipitation-free zone (PFZ). Notably, SA at 160 °C induces the formation of fine, uniformly dispersed nanoscale η′ precipitates in the alloy, as confirmed by XRD phase analysis. Aging at this temperature markedly enhances the mechanical properties, achieving an ultimate tensile strength (UTS) of 613 MPa and a yield strength (YS) of 598 MPa, while presenting an exceptionally broad peak-aging plateau. Owing to this feature, a moderate extension of the SA duration does not reduce strength and can further improve ductility, increasing the elongation (EL) to 14.26%. These results demonstrate a novel two-step heat-treatment strategy that simultaneously achieves ultra-high strength and excellent ductility, highlighting the critical role of advanced electron microscopy in elucidating phase-transformation pathways that inform microstructure-guided alloy design and processing. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 4612 KB  
Article
Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation
by Alexander Koshmin, Alexander Zinoviev, Anna Khakimova, Konstantin Lukashevich, Ruslan Barkov and Dmitriy Demin
J. Manuf. Mater. Process. 2025, 9(10), 336; https://doi.org/10.3390/jmmp9100336 - 14 Oct 2025
Viewed by 514
Abstract
This study investigates the double-sided hot cladding of an experimental Al–2%Cu–1.5%Mn–1%Zn–0.7%Mg–0.4%Fe–0.4%Si alloy with commercially pure aluminum A1050 under combined hot deformation. Finite element modeling was employed to analyze the evolution of shear strains, normal stresses, and flow stresses in the deformation zone during [...] Read more.
This study investigates the double-sided hot cladding of an experimental Al–2%Cu–1.5%Mn–1%Zn–0.7%Mg–0.4%Fe–0.4%Si alloy with commercially pure aluminum A1050 under combined hot deformation. Finite element modeling was employed to analyze the evolution of shear strains, normal stresses, and flow stresses in the deformation zone during cladding. The results indicate that increasing the degree of reduction significantly alters the distribution and direction of shear strains: at low reductions (20–30%), shear directions in the base and cladding layers coincide, while reductions above 40% induce opposing shear directions. Temperature was identified as the dominant factor affecting normal stress and flow stress differences between layers, whereas deformation magnitude primarily influenced peak stresses at the neutral section of the deformation zone. Experimental validation was conducted over a temperature range of 300–450 °C and relative reductions of 20–60%, demonstrating successful layer bonding in all cases except at low temperatures and reductions (300–375 °C, 20–30%). Based on combined modeling and experimental data, a predictive model for estimating peel strength during hot rolling cladding was developed, offering a robust tool for optimizing process parameters and ensuring reliable interlayer bonding in investigated aluminum alloys. Full article
Show Figures

Figure 1

13 pages, 2753 KB  
Article
Effect of CMT and MIG Welding on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Er-Zr Alloy
by Wu Wei, Yijie Sun, Chao Zhang, Limin Zhai, Peng Wang, Li Cui, Shengping Wen, Wei Shi and Xiaorong Zhou
Materials 2025, 18(20), 4688; https://doi.org/10.3390/ma18204688 - 13 Oct 2025
Viewed by 411
Abstract
Cold metal transfer (CMT) welding and metal inert gas (MIG) arc welding of a novel Al-Zn-Mg-Cu-Er-Zr alloy are systematically analyzed. The effect of the two welding processes on the morphology, microstructure, and mechanical properties of welded joints was investigated. The evolution of the [...] Read more.
Cold metal transfer (CMT) welding and metal inert gas (MIG) arc welding of a novel Al-Zn-Mg-Cu-Er-Zr alloy are systematically analyzed. The effect of the two welding processes on the morphology, microstructure, and mechanical properties of welded joints was investigated. The evolution of the microstructures and grain structures in the welded joints is studied using an optical microscope (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that both welding methods obtain well-formed full-penetration welds, and the width of the heat-affected zone (HAZ) of CMT welding is smaller than that of MIG welding. The two welded joints reveal coarse cellular grain structures with precipitates of η (MgZn2), Al3Er, and S (Al6CuMg4) secondary phases. The average grain size of the weld metal in the cold metal transfer welding (12.96 μm) joint is much finer than that of the metal inert gas arc welding joint (22.63 μm), with a higher proportion of high-angle grain boundaries (HAGBs). The hardness of cold metal transfer welding and metal inert gas arc welding weld zones is 103.9 HV and 92.6 HV, respectively, and the tensile strength of the joint is 334.0 MPa and 270.3 MPa, respectively. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

24 pages, 4302 KB  
Article
New Data on Phase Composition and Geochemistry of the Muschelkalk Carbonate Rocks of the Upper Silesian Province in Poland
by Katarzyna J. Stanienda-Pilecki and Rafał Jendruś
Appl. Sci. 2025, 15(19), 10751; https://doi.org/10.3390/app151910751 - 6 Oct 2025
Viewed by 333
Abstract
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations [...] Read more.
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations of the Lower Muschelkalk (Gogolin Unit), Middle Muschelkalk (Diplopore Dolomite Unit) and Upper Muschelkalk (Tarnowice Unit, Boruszowice Unit). The following research methods were used: macroscopic description, X-Ray Diffraction, Fourier transform infrared spectroscopy, X-Ray Fluorescence and Atomic spectrometry with plasma intensification. The following carbonate phases were identified: a low-Mg calcite, a high-Mg calcite, a proto-dolomite, an ordered dolomite and a huntite. The results of XRD analysis allowed the determination of the chemical formulas of the mineral phases. XRF and ICP AES analyses allowed to establish the content of following trace elements: Sr, Ba, Al, Si, Fe, Mn, K, Na, S, Cl, Ti, Cr, Ni, Zn, Rb, Zr, Pb, As, V, Be, B, Co, Cu, Br, Mo and Cd. Apart from Sr and Ba, they are not fundamental components of carbonate rocks. They indicate the presence of minerals such as silicates, aluminosilicates, oxides and sulfides. Full article
Show Figures

Figure 1

41 pages, 65993 KB  
Article
Spatial Distribution of Geochemical Anomalies in Soils of River Basins of the Northeastern Caucasus
by Ekaterina Kashirina, Roman Gorbunov, Ibragim Kerimov, Tatiana Gorbunova, Polina Drygval, Ekaterina Chuprina, Aleksandra Nikiforova, Nastasia Lineva, Anna Drygval, Andrey Kelip, Cam Nhung Pham and Nikolai Bratanov
Geosciences 2025, 15(10), 380; https://doi.org/10.3390/geosciences15100380 - 1 Oct 2025
Viewed by 363
Abstract
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was [...] Read more.
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was measured using inductively coupled plasma mass spectrometry (ICP-MS). Petrogenic elements commonly found in the Earth’s crust (Al, Na, Ca, Fe, Mg) showed high concentrations (Na up to 306,600.70 mg/kg). Conversely, concentrations of Ag, Cd, Sn, Sb, and Te at many sampling sites were extremely low, falling below the detection limits of analytical instruments. The geochemical indicators Cf (contamination factor) and Igeo (geoaccumulation index) indicate that the regional characteristics of the territory, such as lithological conditions, hydrochemical schedules, and the history of geological development of the territory, affect the concentration of elements. Anomalous concentrations were found for seven elements (Ba, Na, Zn, Ag, Li, Sc, As), whereas no anomalies were identified for Be, Mg, Al, Mn, Fe, Co, Ni, Cu, Pb, Te, and Cs. For the most part (8 of 10), the sampling sites with anomalous chemical element content are located in the basin of the Sunzha River. Two sites with anomalous chemical element content have been identified in the Sulak River Basin. Anomalous values in the Sulak River Basin are noted for two chemical elements—Ba and Na. Natural features such as geological structure, parent rock composition, vertical climatic zonation, and landscape diversity play a major role in forming geochemical anomalies. The role of anthropogenic factors increases in localized areas near settlements, industrial facilities, and roads. The spatial distribution of geochemical anomalies must be considered in agricultural management, the use of water sources for drinking supply, the development of tourist routes, and comprehensive spatial planning. Full article
(This article belongs to the Special Issue Soil Geochemistry)
Show Figures

Figure 1

22 pages, 3975 KB  
Article
Comparative Phycoremediation Performance of Two Green Microalgal Strains Under Four Biomass Conditions for Industrial Wastewater Treatment
by Mostafa M. El-Sheekh, Reda M. Moghazy, Mai M. Hamoud and Mostafa E. Elshobary
Phycology 2025, 5(4), 53; https://doi.org/10.3390/phycology5040053 - 1 Oct 2025
Viewed by 479
Abstract
This study uses industrial wastewater from an aluminum factory to evaluate the phycoremediation efficiency of two green microalgal strains, Dictyosphaerium sp. and Tetradesmus obliquus. The industrial wastewater contained high levels of pollutants, including COD, ammonium, nitrate, phosphate, and heavy metal ions (Al [...] Read more.
This study uses industrial wastewater from an aluminum factory to evaluate the phycoremediation efficiency of two green microalgal strains, Dictyosphaerium sp. and Tetradesmus obliquus. The industrial wastewater contained high levels of pollutants, including COD, ammonium, nitrate, phosphate, and heavy metal ions (Al3+, Cu2+, Cr3+, Zn2+, Mn2+, Cd2+). Four biomass conditions were tested: free-living cells (active living cells), immobilized cells (entrapped within alginate), dried biomass (non-living dried cells), and acid-treated dried biomass (chemically modified for enhanced adsorption). Both strains demonstrated significant pollutant removal, with living biomass (free and immobilized) achieving the highest nutrient and organic pollutant removal, and non-living biomass (dried and acid-treated) being more efficient for rapid heavy metal removal. Tetradesmus obliquus showed superior performance across most parameters, while Dictyosphaerium sp. exhibited the highest aluminum removal (99.4%, reducing Al from 481.2 mg/L to 10.2 mg/L). These findings highlight the potential of microalgae-based approaches and support species-specific strategies for cost-effective and sustainable phycoremediation of industrial wastewater. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

20 pages, 19644 KB  
Article
Preliminary Study on the Heat Treatment Optimization of ZnAl15Cu1Mg (ZEP1510) for Enhanced Mechanical Performance
by Marie Zöller, Abdulkerim Karaman, Melanie Frieling and Michael Marré
Processes 2025, 13(10), 3138; https://doi.org/10.3390/pr13103138 - 30 Sep 2025
Viewed by 470
Abstract
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to [...] Read more.
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to improve the durability of potential replacement components. Heat treatment was the primary method, applying annealing, air cooling, water quenching, and artificial aging to modify material properties. Mechanical characterization was performed through Brinell hardness, as well as tensile and Charpy impact testing, complemented by metallographic analysis. Air cooling from temperatures near the transformation point at 275 °C produced a visually refined and homogeneous microstructure (qualitative assessment by OM/SEM), resulting in simultaneous increases in hardness and toughness. Water quenching from this range yielded a metastable state with high toughness but low hardness, while subsequent natural aging significantly increased strength and reduced toughness. Artificial aging indicated precipitation hardening behavior similar to that of aluminum alloys. Although property improvements were achieved, the targeted combination of high toughness and high strength was not fully realized. The findings suggest that controlled artificial aging, alternative quenching media and grain refinement strategies could further enhance performance, providing a basis for tailoring ZEP1510 for demanding engineering applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 6779 KB  
Article
Tailoring Strength and Corrosion Resistance in Al–Zn–Mg–Cu Alloys by Total (Zn + Mg) Content and Multi-Directional Forging Process
by Junfu Lin, Tangjian Liu, Mingdong Wu, Shuo Yuan, Zeyu Li, Yang Huang, Xiao Yin, Lanping Huang, Wensheng Liu and Daihong Xiao
Materials 2025, 18(19), 4476; https://doi.org/10.3390/ma18194476 - 25 Sep 2025
Viewed by 629
Abstract
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic [...] Read more.
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic recrystallization in the MDF process. Specifically, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) obtains the maximum recrystallization ratio (51.8%) and the weakest texture strength, and also forms the mortise and tenon nested grain structure. Increasing the total (Zn + Mg) content can achieve significant performance enhancement, which is attributed to the refinement of the η′ phase; however, a higher total (Zn + Mg) content will lead to the continuous distribution of coarse η-MgZn2 phases formed along the grain boundary, accompanied by the broadening of precipitate-free precipitation zones (PFZs). Compared with other alloys, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) maintains high strength while ensuring desirable plasticity due to its mortise and tenon nested grain structure. In addition, its desirable grain boundary precipitation behavior makes it exhibit the best corrosion resistance. These findings indicate that maintaining the total (Zn + Mg) content around 10 wt.% achieves a balance between strength and corrosion resistance, offering a theoretical foundation for the design of high-strength and corrosion-resistant Al–Zn–Mg–Cu alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

27 pages, 3247 KB  
Article
Impact of Historical Mining and Metallurgical Technologies on Soil and Sediment Composition Along the Ibar River
by Robert Šajn, Jasminka Alijagić and Trajče Stafilov
Minerals 2025, 15(9), 955; https://doi.org/10.3390/min15090955 - 6 Sep 2025
Viewed by 677
Abstract
This study systematically investigates soil and stream sediment along the 165 km Ibar River to examine the origin and transfer of pollutants. The research focuses on the environmental impact of long-term mining and irregular waste management, as well as natural enrichment related to [...] Read more.
This study systematically investigates soil and stream sediment along the 165 km Ibar River to examine the origin and transfer of pollutants. The research focuses on the environmental impact of long-term mining and irregular waste management, as well as natural enrichment related to weathering processes. A comprehensive sampling campaign was conducted, collecting 70 samples from 14 locations. At each location, samples of river sediment, floodplain soil (0–5 cm and 20–30 cm depths), and river terrace soil (same depths) were collected. The contents of 21 elements (Ag, Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V, and Zn) were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES). Analysis of Variance (ANOVA) was performed to identify statistically significant differences in element contents between defined zones, sampled materials (river sediments, floodplain soils, and river terrace soils), and sampled soil horizons (topsoil, 0–5 cm, and subsoil, 20–30 cm). Multivariate analysis, including correlation coefficient, cluster analysis, and principal component analysis, revealed two distinct groups of elements with highly significant correlation coefficients (r > 0.7). The first group, comprising Ag, As, Cd, Cu, Mn, and Zn, indicates anthropogenic enrichment, likely resulting from mining and smelting activities in the middle flow of the Ibar River (The Mining and Metallurgical Complex Trepča). The second group, consisting of Cr, Mg, and Ni, suggests enrichment related to the weathering of elements from the ophiolite zone in the lower Ibar River. The study found high enrichment ratios of toxic elements like arsenic, cadmium, lead, and zinc, particularly in stream sediments and floodplains. Notably, arsenic contents exceeded European averages by up to 57 times in stream sediments, posing a significant environmental concern due to its high content. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Sediments)
Show Figures

Figure 1

24 pages, 1991 KB  
Article
Dietary Intakes and Exposures to Minerals and Trace Elements from Cereal-Based Mixtures: Potential Health Benefits and Risks for Adults
by Martina Mrázková, Daniela Sumczynski, Lenka Šenkárová and Richardos Nikolaos Salek
Nutrients 2025, 17(17), 2848; https://doi.org/10.3390/nu17172848 - 31 Aug 2025
Viewed by 1293
Abstract
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements [...] Read more.
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements and, at the same time, assesses their safety in terms of toxic elements in the human diet. Methods: The mineral and trace element contents in the mixtures were determined using the ICP-MS method with a subsequent evaluation of the contributions of the mixtures to the essential and toxic reference values based on dietary intakes and exposures for adults at 60, 80 and 100 kg of adult body weight and a portion size of 50 g. The potential health risk was evaluated using a metal pollution index. Results: The concentrations of minerals and trace elements in the cereal-based mixtures analyzed were as follows: K (up to 4150 µg/g) ≥ P > Mg > Ca > Na > Fe > Zn > Mn > Cu > Al > Ba (up to 4.40 µg/g) > Sr (up to 480 ng/g) ≥ Ti ≥ Ni > Ce ≥ Co > As ≥ Cs > Ag ≥ Li > Se > Be > Cr > Tl > Pb ≥ Hg > Ho > Cd > Sn (up to 1.12 ng/g). The mixtures contribute significantly to the reference values for Mn, Cu, Zn, Fe, and P for adults. Individual dietary exposure values of toxic elements for adults weighing 60 kg decrease in this order: Al (10.1 µg/kg bw/day) > Ni (362 ng/kg bw/day) > As ≥ Pb > Ag > Hg > Cd > and Sn (0.93 ng/kg bw/day). Conclusions: In terms of Regulation (EU) No 1924/2006 of the European Parliament and of the Council on nutrition and health claims made on foods, the cereal-based mixtures could be labelled “source of” Mn, Cu, Zn, Fe, and P when their contributions to the reference values exceeded 15%; in addition, “low sodium/salt” or “very low sodium/salt” can be applied. The mixtures contribute insignificantly to the toxic reference values of Al, Sn, Hg, Cd, Ni, and Ag, and the exposure values of Pb for developmental neurotoxicity, nephrotoxicity, and cardiovascular effects were considered safe. Regarding the metal pollution index of mixtures, there is no concern for potential health effects. Cereal-based mixtures are suitable for use in the food industry as a potential source of beneficial micronutrients for the human diet, although bioaccessible studies should not be neglected. Full article
Show Figures

Figure 1

Back to TopTop