Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Astragalus adsurgens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2327 KB  
Article
The Novel Disease Vicia unijuga Caused by Colletotrichum tofieldiae in China: Implications for Host Growth, Photosynthesis, and Nutritional Quality
by Tong-Tong Wang, Hang Li and Yan-Zhong Li
J. Fungi 2025, 11(8), 567; https://doi.org/10.3390/jof11080567 - 29 Jul 2025
Viewed by 837
Abstract
Vicia unijuga, an important forage legume on China’s Qinghai–Tibetan Plateau, exhibited dark-brown sunken lesions on their stems at the Qingyang Experimental Station of Lanzhou University. The fungus isolated from the diseased tissues was identified as Colletotrichum tofieldiae via a multi-locus phylogeny (ITS- [...] Read more.
Vicia unijuga, an important forage legume on China’s Qinghai–Tibetan Plateau, exhibited dark-brown sunken lesions on their stems at the Qingyang Experimental Station of Lanzhou University. The fungus isolated from the diseased tissues was identified as Colletotrichum tofieldiae via a multi-locus phylogeny (ITS-ACT-Tub2-CHS-1-GADPH-HIS3). The pathogenicity was confirmed by Koch’s postulates. The inoculated plants showed significantly reduced (p < 0.05) growth parameters (height, root length, and biomass), photosynthetic indices (net rate, transpiration, and stomatal conductance), and nutritional quality (crude protein, crude fat, crude ash, and crude fiber) compared to the controls. C. tofieldiae additionally infected six legume species (V. sativa, Medicago sativa, Onobrychis viciifolia, Astragalus adsurgens, Trifolium pratense, and T. repens). Optimal in vitro growth occurred on oatmeal agar (mycelium) and cornmeal agar (spores), with D-sucrose and D-peptone as the best carbon and nitrogen sources. This first report of C. tofieldiae causing V. unijuga anthracnose advances the understanding of legume anthracnose pathogens. Full article
Show Figures

Figure 1

18 pages, 10178 KB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 1105
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 3491 KB  
Article
Study on Toxic Substances in Astragalus adsurgens Infected with Alternaria gansuense
by Huaqi Liu and Yanzhong Li
Agriculture 2025, 15(13), 1401; https://doi.org/10.3390/agriculture15131401 - 29 Jun 2025
Viewed by 884
Abstract
Yellow stunt and root rot causes premature degradation of Astragalus adsurgens grasslands in China. However, the etiological factors underlying livestock poisoning following the ingestion of diseased plants remain elusive. The present study aimed to comprehensively characterize the alterations in toxic substances such as [...] Read more.
Yellow stunt and root rot causes premature degradation of Astragalus adsurgens grasslands in China. However, the etiological factors underlying livestock poisoning following the ingestion of diseased plants remain elusive. The present study aimed to comprehensively characterize the alterations in toxic substances such as swainsonine and trace element profiles in A. adsurgens after infection with Alternaria gansuense, thereby elucidating the underlying mechanisms of livestock toxicity. Using ELISA and regression analyses, we found that diseased plants had higher selenium levels than the healthy ones, with varietal differences. Selenium in the Zahua variety was higher in healthy plants, while diseased plants of the Henan variety had the highest levels. Moreover, the diseased plants demonstrated decreased levels of iron, zinc, sodium, and magnesium, while manganese and calcium concentrations remained unchanged. Swainsonine was detected in both the healthy and infected specimens of Zhongsha No.1 and Henan varieties, with a marked post-infection increase. In conclusion, swainsonine is the primary toxin causing livestock poisoning, and it is unlikely that soil-accumulated selenium poisons animals. However, potential correlations might exist among the contents of selenium, sodium, and swainsonine. We recommend the cautious use of diseased A. adsurgens as livestock feed. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 1844 KB  
Article
Responses of Soil Microbial Communities in an Alkalized Meadow Soil to Biochar Addition
by Tingting Gao, Ying Zhang, Zhenbo Cui and Chengyou Cao
Microorganisms 2025, 13(6), 1228; https://doi.org/10.3390/microorganisms13061228 - 27 May 2025
Cited by 1 | Viewed by 611
Abstract
Biochar is increasingly being applied to improve various degraded soils. However, studies on its use in ameliorating saline–alkaline grasslands remain limited. This study conducted experimental trials using soil collected from an alkalized meadow grassland in the Horqin Steppe, applying biochar with the application [...] Read more.
Biochar is increasingly being applied to improve various degraded soils. However, studies on its use in ameliorating saline–alkaline grasslands remain limited. This study conducted experimental trials using soil collected from an alkalized meadow grassland in the Horqin Steppe, applying biochar with the application rates of 0, 1.5, 3.0, and 4.5 kg/m2 in planting boxes. The objectives were to evaluate the effects of biochar addition on soil properties and microbial community and to explore the feasibility of using biochar for alkalized grassland improvement. Biochar addition to alkalized meadow soil enhanced the biomass of planted Astragalus adsurgens and improved soil properties. Soil bulk density was reduced; porosity, moisture content, and field moisture capacity significantly increased; soil nutrients were significantly ameliorated. Simultaneously, soil enzyme activities, including urease, phosphomonoesterase, protease, and polyphenol oxidase, significantly increased. Biochar application altered the microbial community structures in the alkalized meadow soil, primarily through the shifts in the relative abundance of dominant taxa rather than the fundamental changes in dominant phyla or genera. Biochar addition significantly raised the abundance of phoD- and nifH-harboring microorganisms, suggesting the enhancement in functions of soil N fixation and P transformation. Key factors influencing bacterial community structure included electrical conductivity, total P, total K, bulk density, and available K, whereas fungal communities were primarily affected by bulk density, porosity, and available N. Excessive biochar application can diminish its yield-enhancing effects, and the recommended biochar application rate for alkalized meadow grasslands in practice is 1.5 kg/m2. These findings are expected to provide experimental evidence for utilizing biochar in degraded grasslands improvement. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology, 2nd Edition)
Show Figures

Figure 1

12 pages, 2164 KB  
Article
Alterations in Physiological Parameters and Secondary Metabolites of Astragalus adsurgens Infected by the Pathogen Alternaria gansuensis
by Xinyao Han, Xiaopeng Li, James F. White, Rebecca Creamer, Chunjie Li and Binhua Yu
Agronomy 2024, 14(9), 1892; https://doi.org/10.3390/agronomy14091892 - 24 Aug 2024
Cited by 1 | Viewed by 1379
Abstract
Alternaria gansuensis, a seed-borne fungus of standing milkvetch (Astragalus adsurgens), is the most common pathogen of this plant species and causes yellow stunt and root rot. Although plant resistance to this disease has been identified, a better understanding of the [...] Read more.
Alternaria gansuensis, a seed-borne fungus of standing milkvetch (Astragalus adsurgens), is the most common pathogen of this plant species and causes yellow stunt and root rot. Although plant resistance to this disease has been identified, a better understanding of the nature of this resistance will help improve and optimize its implementation in standing milkvetch. The effects of A. gansuensis on the physiology of standing milkvetch were assessed in a 4-week study comparing a resistant plant variety, Shanxi, and a susceptible variety, Ningxia. In the first week, there was an obvious decrease in photosynthesis (P) in inoculated plants, especially in the susceptible variety, but there were no changes in stomatal conductance (Sc). From the second week on, P and Sc decreased progressively, and significant stem lesions were observed concomitantly. Water use efficiency (WUE) increased slightly in the second week but then decreased significantly from the third week. Physiological changes observed for the resistant variety of standing milkvetch were less dramatic than those of the susceptible variety. Hyphae were observed around inoculation lesions of the plants. Culture filtrate (CF) of A. gansuensis induced changes in extracellular pH and conductivity, especially in the susceptible variety samples. Tissue integrity changes in the plants correlated with the decrease in P. Secondary metabolite compounds were extracted from the plants and 21 types of compounds were identified. The composition and proportion of secondary metabolites were markedly altered by the pathogen, and these differences may indicate potential mechanisms of disease resistance to A. gansuensis in standing milkvetch. Full article
(This article belongs to the Special Issue Grass and Forage Diseases: Etiology, Epidemic and Management)
Show Figures

Figure 1

15 pages, 3905 KB  
Article
Evaluation of the Growth, Sporulation, Fungicide Efficacy, and Host Range of Ramularia sphaeroidea
by Min Shi and Yan-Zhong Li
Microorganisms 2024, 12(4), 766; https://doi.org/10.3390/microorganisms12040766 - 10 Apr 2024
Viewed by 1581
Abstract
Ramularia sphaeroidea was primarily identified based on the characteristics of its conidia and several sequences. The fungus causes severe leaf spot disease on hairy vetch (Vicia villosa var. glabrescens) in Yunnan Province in China. The growth, sporulation, fungicide efficacy, and host [...] Read more.
Ramularia sphaeroidea was primarily identified based on the characteristics of its conidia and several sequences. The fungus causes severe leaf spot disease on hairy vetch (Vicia villosa var. glabrescens) in Yunnan Province in China. The growth, sporulation, fungicide efficacy, and host range of the pathogen were evaluated to aid in disease management. Different types of culture media and carbon and nitrogen sources were used to evaluate the growth of R. sphaeroidea. Oatmeal, maltose, and potassium nitrate agar had a higher amount of sporulation. Difenoconazole (10%) was the most effective fungicide against the leaf disease caused by R. sphaeroidea. In addition, foliar inoculation sprays were used to assess the host range of R. sphaeroidea in six different plant species, including alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), erect milkvetch (Astragalus adsurgens Pall.), common vetch (Vicia sativa L.), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.). R. sphaeroidea successfully infected these plants, indicating that it has a wider host range than hairy vetches. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop