Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Brazilian bamboo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1980 KB  
Article
Durability Assessment of Binary and Ternary Eco-Friendly Mortars with Low Cement Content
by Lucas Henrique Pereira Silva, Jacqueline Roberta Tamashiro, Fabio Friol Guedes de Paiva, João Henrique da Silva Rego, Miguel Angel de la Rubia, Angela Kinoshita and Amparo Moragues Terrades
Solids 2025, 6(2), 28; https://doi.org/10.3390/solids6020028 - 3 Jun 2025
Viewed by 1023
Abstract
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production [...] Read more.
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production to deliver both technical and environmental benefits to mortars and concrete. This study examines mortar blends containing blast furnace slag (BFS), Brazilian calcined clay (BCC), and bamboo leaf ash (BLA). While BFS and BCC are already established in the cement industry, recent research has highlighted BLA as a promising pozzolanic material. The SCMs were characterized, and mortars were produced to assess their flexural and compressive strength, as well as durability indicators such as electrical resistivity, chloride diffusion, migration coefficient, and carbonation resistance. The findings reveal significant performance enhancements. Partial cement replacement (20% and 40%) maintained the strength of both binary and ternary mortars, demonstrating statistical equivalence to the reference mortar (p > 0.05). It also contributed to an improved pore structure, reducing the migration coefficient by up to four times in the 20BLA20BCC mix (which replaces 20% of cement with BLA and 20% with BCC) compared to the reference mix. Chemically, the SCMs enhanced the chloride-binding capacity of the cementitious matrix by up to seven times in the case of the 20BCC mortar, thereby improving its durability. Therefore, all tested compositions—binary and ternary—showed mechanical and durability advantages over the reference while also contributing to the reduction in environmental impacts associated with the cement industry. Full article
Show Figures

Figure 1

15 pages, 3319 KB  
Article
The Flexural Strength of Three Bamboo Species from Brazil: A Comparative Study of Internal and External Lamina Surfaces Using Static and Dynamic Bending Properties
by Hugo Rocha Scharfenberg, Ana Carolina Borella Marfil Anhê, Victor Almeida De Araujo, Maristela Gava, Fernando Júnior Resende Mascarenhas, Elen Aparecida Martines Morales, André Luis Christoforo, Marcos Massao Shimano and Juliana Cortez-Barbosa
Forests 2024, 15(4), 580; https://doi.org/10.3390/f15040580 - 22 Mar 2024
Cited by 2 | Viewed by 2255
Abstract
Bamboo is already a convenient construction resource, as it offers an efficient structural performance. As this plant has native varieties adapted to different climates and soils of Brazil, bamboo silviculture can be intensified to supply the national industry. Three bamboo species from Brazil [...] Read more.
Bamboo is already a convenient construction resource, as it offers an efficient structural performance. As this plant has native varieties adapted to different climates and soils of Brazil, bamboo silviculture can be intensified to supply the national industry. Three bamboo species from Brazil (Dendrocalamus asper, Bambusa tuldoides, and Phyllostachys aurea) were analyzed for the flexural load capacity applied on the internal and external surfaces. Specimens were prepared without knots and with knots centered at the middle of each sample. In total, 240 samples were tested in terms of static bending and dynamic bending (impact). The results showed a higher flexural elasticity and a higher proportional limit strength of knotted P. aurea. The presence of knots provided higher values of ultimate strength in P. aurea, even reducing the bamboo flexibility. Also, P. aurea exhibited the best characteristic of flexural dynamic energy absorption among the three bamboo species under evaluation. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties)
Show Figures

Figure 1

29 pages, 5881 KB  
Article
Variation in a Darwin Wasp (Hymenoptera: Ichneumonidae) Community along an Elevation Gradient in a Tropical Biodiversity Hotspot: Implications for Ecology and Conservation
by Vivian Flinte, Diego G. Pádua, Emily M. Durand, Caitlin Hodgin, Gabriel Khattar, Luiz Felipe L. da Silveira, Daniell R. R. Fernandes, Ilari E. Sääksjärvi, Ricardo F. Monteiro, Margarete V. Macedo and Peter J. Mayhew
Insects 2023, 14(11), 861; https://doi.org/10.3390/insects14110861 - 7 Nov 2023
Cited by 8 | Viewed by 6314
Abstract
Understanding how biodiversity varies from place to place is a fundamental goal of ecology and an important tool for halting biodiversity loss. Parasitic wasps (Hymenoptera) are a diverse and functionally important animal group, but spatial variation in their diversity is poorly understood. We [...] Read more.
Understanding how biodiversity varies from place to place is a fundamental goal of ecology and an important tool for halting biodiversity loss. Parasitic wasps (Hymenoptera) are a diverse and functionally important animal group, but spatial variation in their diversity is poorly understood. We survey a community of parasitic wasps (Ichneumonidae: Pimplinae) using Malaise traps up a mountain in the Brazilian Atlantic Rainforest, and relate the catch to biotic and abiotic habitat characteristics. We find high species richness compared with previous similar studies, with abundance, richness, and diversity peaking at low to intermediate elevation. There is a marked change in community composition with elevation. Habitat factors strongly correlated with elevation also strongly predict changes in the pimpline community, including temperature as well as the density of bamboo, lianas, epiphytes, small trees, and herbs. These results identify several possible surrogates of pimpline communities in tropical forests, which could be used as a tool in conservation. They also contribute to the growing evidence for a typical latitudinal gradient in ichneumonid species richness, and suggest that low to medium elevations in tropical regions will sometimes conserve the greatest number of species locally, but to conserve maximal biodiversity, a wider range of elevations should also be targeted. Full article
(This article belongs to the Topic Arthropod Biodiversity: Ecological and Functional Aspects)
Show Figures

Graphical abstract

15 pages, 2349 KB  
Article
Identification of the Active Principle Conferring Anti-Inflammatory and Antinociceptive Properties in Bamboo Plant
by Bruna Araujo Sousa, Osmar Nascimento Silva, William Farias Porto, Thales Lima Rocha, Luciano Paulino Silva, Ana Paula Ferreira Leal, Danieli Fernanda Buccini, James Oluwagbamigbe Fajemiroye, Ruy de Araujo Caldas, Octávio Luiz Franco, Maria Fátima Grossi-de-Sá, Cesar de la Fuente Nunez and Susana Elisa Moreno
Molecules 2021, 26(10), 3054; https://doi.org/10.3390/molecules26103054 - 20 May 2021
Cited by 1 | Viewed by 4370
Abstract
Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for [...] Read more.
Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine. Full article
(This article belongs to the Special Issue Natural Product-Inspired Molecules: From Weed to Remedy)
Show Figures

Graphical abstract

Back to TopTop