Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = Ehrlich Ascites Carcinoma cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4208 KB  
Article
Nanoparticle-Based Delivery of Resveratrol Suppresses Ehrlich Ascites Carcinoma and Protects Testicular Function via Antioxidant, Anti-Angiogenic, Anti-Inflammatory, and Pro-Apoptotic Mechanisms
by M. Alfawaz, Ekramy M. Elmorsy, Ahmad Najem Alshammari, Marwa Nagy Emam, Islam Ibrahim Hegab, Aly A. M. Shaalan, Manal S. Fawzy and Lina Abdelhady Mohammed
Biomolecules 2025, 15(11), 1605; https://doi.org/10.3390/biom15111605 - 15 Nov 2025
Viewed by 470
Abstract
This study, for the first time, evaluated the therapeutic potential of resveratrol-loaded phytosome nanoparticles (RES-PNPs) against Ehrlich ascites carcinoma (EAC) and associated testicular dysfunction, compared with free resveratrol (RES). Ninety male Swiss albino mice were divided into six groups, (1) control; (2) RES [...] Read more.
This study, for the first time, evaluated the therapeutic potential of resveratrol-loaded phytosome nanoparticles (RES-PNPs) against Ehrlich ascites carcinoma (EAC) and associated testicular dysfunction, compared with free resveratrol (RES). Ninety male Swiss albino mice were divided into six groups, (1) control; (2) RES (10 mg/kg/day, orally); (3) RES-PNPs (10 mg/kg/day, orally); (4) EAC, induced by intraperitoneal injection of 2.5 × 106 cells; (5) EAC + RES; and (6) EAC + RES-PNPs, treated for 20 days post-tumor inoculation. Tumor growth parameters, reproductive function, antioxidant enzyme activities, inflammatory mediators, apoptotic markers, and histopathological features were assessed. Additionally, in silico docking was performed to identify molecular targets mediating RES effects. RES-PNPs markedly reduced tumor volume, ascitic cell viability, and body weight gain while significantly prolonging survival compared with free RES. Molecular assays revealed enhanced pro-apoptotic signaling (increased Bax and Caspase-3, decreased Bcl-2), suppression of vascular endothelial growth factor (VEGF), and inhibition of COX-2 with reduced TNF-α, IFN-γ, and IL-1β levels. RES-PNPs also restored semen quality, normalized reproductive hormones, elevated antioxidant enzyme activities, and reduced lipid and protein oxidation, corroborated by notable testicular histological protection. In conclusion, Resveratrol-loaded phytosome nanoparticles provide superior anti-tumor, antioxidant, anti-inflammatory, and pro-apoptotic benefits compared with free RES. These findings highlight RES-PNPs as a potent and stable nanoformulation for effective EAC suppression and preservation of male reproductive integrity. Full article
(This article belongs to the Special Issue The Role of Nanoparticles in Tumor Treatment)
Show Figures

Figure 1

31 pages, 6901 KB  
Article
Therapeutic Potential of Food-Derived Rutin Phytosome Nanoparticles: Anti-Tumor, Antioxidant, and Anti-Inflammatory Activity in Ehrlich Ascites Carcinoma
by M. Alfawaz, Ekramy M. Elmorsy, Alaa Samy, Ahmed S. Shams, Mai A. Salem, Aly A. M. Shaalan, Manal S. Fawzy and Nora Hosny
Pharmaceuticals 2025, 18(9), 1410; https://doi.org/10.3390/ph18091410 - 19 Sep 2025
Cited by 2 | Viewed by 885
Abstract
Background/Objectives: Rutin (RT), a promising bioflavonoid, faces clinical limitations due to its poor solubility and bioavailability. In this study, we formulated RT-loaded phytosome nanoparticles (RT-PNPs) via thin-layer hydration and characterized their morphology, size distribution, and zeta potential. Methods: We established a mouse model [...] Read more.
Background/Objectives: Rutin (RT), a promising bioflavonoid, faces clinical limitations due to its poor solubility and bioavailability. In this study, we formulated RT-loaded phytosome nanoparticles (RT-PNPs) via thin-layer hydration and characterized their morphology, size distribution, and zeta potential. Methods: We established a mouse model of Ehrlich ascites carcinoma (EAC), randomly allocating ninety female Swiss albino mice into six groups: untreated controls, RT-treated, RT-PNP-treated, EAC, EAC + RT, and EAC + RT-PNPs. Tumor induction and treatment protocols were controlled, with the oral administration of 25 mg/kg/day of RT or RT-PNPs for 20 days. We comprehensively assessed survival, body weight, ascitic fluid/tumor volume, and cell viability and performed detailed hematological, serum biochemical, and tumor marker analyses. Multiorgan (liver and kidney) function and redox homeostasis were evaluated through enzymatic assays for SOD, CAT, GSH-Px, and GSH, as well as lipid peroxidation assessment. Proinflammatory cytokines and tumor markers (AFP, CEA, CA19-9, CA125, and CA15-3) were quantified via ELISA. Results: Gene expression profiling (TP53, Bax, and Bcl-2) and flow cytometry (p53 and Ki-67) elucidated the modulation of apoptosis. Histopathological scoring documented organ protection, while advanced multivariate (heatmap and principal component) analyses revealed distinct treatment clusterings. The RT-PNPs demonstrated potent anti-tumor, antioxidant, anti-inflammatory, and apoptosis-inducing effects, outperforming free RT in restoring physiological markers and tissue integrity. Conclusions: The current results underscore the potential of RT-PNPs as a multifaceted therapeutic approach to EAC, leveraging nanoparticle technology to optimize efficacy and systemic protection. Full article
(This article belongs to the Special Issue The Discovery and Development of Drug Ingredients from Food Sources)
Show Figures

Figure 1

19 pages, 987 KB  
Article
Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity
by Oksana Struk, Yurii Klymenko, Oleh Koshovyi, Andriy Grytsyk, Galyna Starchenko, Valdas Jakštas, Vaidotas Žvikas and Ain Raal
Appl. Sci. 2025, 15(12), 6749; https://doi.org/10.3390/app15126749 - 16 Jun 2025
Viewed by 899
Abstract
Filipendula vulgaris Moench (syn. F. hexapetala Gilib., dropwort, Rosaceae) is widely used in folk medicine as an antitumour agent, but there is a lack of scientific knowledge about it. This research aimed to study the phytochemical composition and cytotoxic and antitumour activity of [...] Read more.
Filipendula vulgaris Moench (syn. F. hexapetala Gilib., dropwort, Rosaceae) is widely used in folk medicine as an antitumour agent, but there is a lack of scientific knowledge about it. This research aimed to study the phytochemical composition and cytotoxic and antitumour activity of aqueous and aqueous–alcoholic extracts from rhizomes with roots of F. vulgaris to investigate their effect on the development of experimental Ehrlich ascites carcinoma in mice, and their effect on the animals’ lifespan. A total of 10 phenolics and 14 amino acids were determined by HPLC in the extracts. The dominant phenolic compounds were procyanidins B1, B2, and C1, as well as metabolites of the tannins (+)-catechin and epicatechin gallate. For the first time, 27 volatile substances were identified and semiquantified using GC-MS. The principal volatile components were palmitic acid (41.0%), methyl salicylate (24.2%), and benzyl salicylate (17.5%). The aqueous–alcoholic extract was significantly more effective than the aqueous one. The treatment of mice with Ehrlich carcinoma using the F. vulgaris aqueous–alcoholic extract normalised the studied indicators. The growth inhibition coefficient of Ehrlich ascites carcinoma was 62.3% and 65.8% on the 7th and 14th days, respectively. This was manifested in the inhibition of tumour growth based on a decrease in the content of ascites fluid in the abdominal cavity; a more intense manifestation of cytotoxic action on cancer cells; improvements in haematopoiesis, the antioxidant defence system, and the content of the studied bioelements in the blood serum; and an increase in the lifespan of experimental animals by around two times. The study results allow us to consider F. vulgaris rhizomes with roots as a promising anticancer agent for the design of pharmaceutical preparations and further study their effects on the human body. Full article
(This article belongs to the Special Issue Novel Research on Bioactive Compounds in Plant Products)
Show Figures

Figure 1

25 pages, 6777 KB  
Article
Phytochemical Analysis and In Vivo Anticancer Effect of Becium grandiflorum: Isolation and Characterization of a Promising Cytotoxic Diterpene
by Christeen Fahim, Maha R. A. Abdollah, Rola M. Labib, Nehal Ibrahim and Noha Swilam
Nutrients 2025, 17(7), 1164; https://doi.org/10.3390/nu17071164 - 27 Mar 2025
Cited by 1 | Viewed by 1017
Abstract
Background:Becium grandiflorum is a fragrant perennial shrub of the Lamiaceae family. Objectives: The current study aimed to explore the cytotoxic potential of the n-hexane fraction from Becium grandiflorum aerial parts and, further, isolate its major diterpene and conduct in vitro [...] Read more.
Background:Becium grandiflorum is a fragrant perennial shrub of the Lamiaceae family. Objectives: The current study aimed to explore the cytotoxic potential of the n-hexane fraction from Becium grandiflorum aerial parts and, further, isolate its major diterpene and conduct in vitro and in vivo anticancer activities along with its molecular mechanism and synergy with doxorubicin. Methods: The hydroalcoholic extract of Becium grandiflorum aerial parts was fractionated, and the n-hexane fraction was analyzed via GC-MS. The major isolated diterpene, 18-epoxy-pimara-8(14),15-diene (epoxy-pimaradiene), was quantified using UPLC-PDA. Cytotoxicity assays were conducted on HCT-116, MCF-7, MDA-MB-231, and HepG2 cell lines. The synergistic effect with doxorubicin was tested on HepG2 cells. In vivo anticancer activity was evaluated using the Ehrlich ascites carcinoma model, and molecular docking analyzed Bax-Bcl2 interactions. Results: The n-hexane fraction contained 21 compounds, mainly oxygenated diterpenes, and the major isolated compound was epoxy-pimaradiene, with a quantity of 0.3027 mg/mg. N-Hexane fraction and epoxy-pimaradiene exhibited strong cytotoxicity against HepG2 cells, induced apoptosis, and G2/M arrest. The combination of epoxy-pimaradiene with doxorubicin lowered the IC50 of doxorubicin from 4 µM to 1.78 µM. In vivo, both reduced tumor growth and increased necrotic tumor areas. Molecular docking revealed disruption of Bax-Bcl2. Conclusions: The findings suggest that B. grandiflorum and its major diterpene, epoxy-pimaradiene, exhibit potent anticancer activity, particularly against liver cancer cells. Epoxy-pimaradiene enhances doxorubicin’s efficacy, induces apoptosis, and inhibits tumor progression. Further studies are needed to explore their therapeutic potential. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

18 pages, 5328 KB  
Article
Carbohydrate-Binding Properties and Antimicrobial and Anticancer Potential of a New Lectin from the Phloem Sap of Cucurbita pepo
by Md. Aminul Islam, Md. Mikail Hossain, Alima Khanam, A. K. M. Asaduzzaman, Syed Rashel Kabir, Yasuhiro Ozeki, Yuki Fujii and Imtiaj Hasan
Molecules 2024, 29(11), 2531; https://doi.org/10.3390/molecules29112531 - 27 May 2024
Cited by 7 | Viewed by 2269
Abstract
A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, [...] Read more.
A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively. Full article
(This article belongs to the Special Issue Research on Natural Toxins from Plants and Food)
Show Figures

Graphical abstract

16 pages, 2146 KB  
Article
Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma
by Mostafa M. El-Sheekh, Fatma Ward, Mohamed A. Deyab, Majid Al-Zahrani and Hussein E. Touliabah
Molecules 2023, 28(20), 7175; https://doi.org/10.3390/molecules28207175 - 19 Oct 2023
Cited by 27 | Viewed by 4235
Abstract
Brown macroalgae are a rich source of fucoidans with many pharmacological uses. This research aimed to isolate and characterize fucoidan from Dictyota dichotoma var. dichotoma (Hudson) J.V. Lamouroux and evaluate in vitro its antioxidant and antitumor potential. The fucoidan yield was 0.057 g/g [...] Read more.
Brown macroalgae are a rich source of fucoidans with many pharmacological uses. This research aimed to isolate and characterize fucoidan from Dictyota dichotoma var. dichotoma (Hudson) J.V. Lamouroux and evaluate in vitro its antioxidant and antitumor potential. The fucoidan yield was 0.057 g/g algal dry wt with a molecular weight of about 48.6 kDa. In terms of fucoidan composition, the sulfate, uronic acid, and protein contents were 83.3 ± 5.20 mg/g fucoidan, 22.5 ± 0.80 mg/g fucoidan, and 26.1 ± 1.70 mg/g fucoidan, respectively. Fucose was the primary sugar component, as were glucose, galactose, mannose, xylose, and glucuronic acid. Fucoidan exhibited strong antioxidant potential that increased by more than 3 times with the increase in concentration from 0.1 to 5.0 mg/mL. Moreover, different concentrations of fucoidan (0.05–1 mg/mL) showed their ability to decrease the viability of Ehrlich ascites carcinoma cells in a time-dependent manner. These findings provided a fast method to obtain an appreciable amount of natural fucoidan with established structural characteristics as a promising compound with pronounced antioxidant and anticancer activity. Full article
Show Figures

Graphical abstract

26 pages, 7620 KB  
Article
Vitamin D3 Inhibits the Viability of Breast Cancer Cells In Vitro and Ehrlich Ascites Carcinomas in Mice by Promoting Apoptosis and Cell Cycle Arrest and by Impeding Tumor Angiogenesis
by Prashanth Kumar M. Veeresh, Chaithanya G. Basavaraju, Siva Dallavalasa, Preethi G. Anantharaju, Suma M. Natraj, Olga A. Sukocheva and SubbaRao V. Madhunapantula
Cancers 2023, 15(19), 4833; https://doi.org/10.3390/cancers15194833 - 2 Oct 2023
Cited by 17 | Viewed by 4911
Abstract
The incidence of aggressive and resistant breast cancers is growing at alarming rates, indicating a necessity to develop better treatment strategies. Recent epidemiological and preclinical studies detected low serum levels of vitamin D in cancer patients, suggesting that vitamin D may be effective [...] Read more.
The incidence of aggressive and resistant breast cancers is growing at alarming rates, indicating a necessity to develop better treatment strategies. Recent epidemiological and preclinical studies detected low serum levels of vitamin D in cancer patients, suggesting that vitamin D may be effective in mitigating the cancer burden. However, the molecular mechanisms of vitamin D3 (cholecalciferol, vit-D3)-induced cancer cell death are not fully elucidated. The vit-D3 efficacy of cell death activation was assessed using breast carcinoma cell lines in vitro and a widely used Ehrlich ascites carcinoma (EAC) breast cancer model in vivo in Swiss albino mice. Both estrogen receptor-positive (ER+, MCF-7) and -negative (ER-, MDA-MB-231, and MDA-MB-468) cell lines absorbed about 50% of vit-D3 in vitro over 48 h of incubation. The absorbed vit-D3 retarded the breast cancer cell proliferation in a dose-dependent manner with IC50 values ranging from 0.10 to 0.35 mM. Prolonged treatment (up to 72 h) did not enhance vit-D3 anti-proliferative efficacy. Vit-D3-induced cell growth arrest was mediated by the upregulation of p53 and the downregulation of cyclin-D1 and Bcl2 expression levels. Vit-D3 retarded cell migration and inhibited blood vessel growth in vitro as well as in a chorioallantoic membrane (CAM) assay. The intraperitoneal administration of vit-D3 inhibited solid tumor growth and reduced body weight gain, as assessed in mice using a liquid tumor model. In summary, vit-D3 cytotoxic effects in breast cancer cell lines in vitro and an EAC model in vivo were associated with growth inhibition, the induction of apoptosis, cell cycle arrest, and the impediment of angiogenic processes. The generated data warrant further studies on vit-D3 anti-cancer therapeutic applications. Full article
Show Figures

Figure 1

18 pages, 4332 KB  
Article
LCMS/MS Phytochemical Profiling, Molecular, Pathological, and Immune-Histochemical Studies on the Anticancer Properties of Annona muricata
by Rehab H. Abdallah, Muneera S. M. Al-Saleem, Wael M. Abdel-Mageed, Al-Sayed R. Al-Attar, Youssef M. Shehata, Doaa M. Abdel-Fattah and Rahnaa M. Atta
Molecules 2023, 28(15), 5744; https://doi.org/10.3390/molecules28155744 - 29 Jul 2023
Cited by 8 | Viewed by 3576
Abstract
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to [...] Read more.
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (14), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts. Full article
Show Figures

Graphical abstract

19 pages, 4291 KB  
Article
In Vitro Cytotoxicity and In Vivo Antitumor Activity of Lipid Nanocapsules Loaded with Novel Pyridine Derivatives
by Amr Selim Abu Lila, Mohammed Amran, Mohamed A. Tantawy, Ehssan H. Moglad, Shadeed Gad, Hadil Faris Alotaibi, Ahmad J. Obaidullah and El-Sayed Khafagy
Pharmaceutics 2023, 15(6), 1755; https://doi.org/10.3390/pharmaceutics15061755 - 16 Jun 2023
Cited by 6 | Viewed by 2415
Abstract
This study demonstrates high drug-loading of novel pyridine derivatives (S1–S4) in lipid- and polymer-based core–shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, [...] Read more.
This study demonstrates high drug-loading of novel pyridine derivatives (S1–S4) in lipid- and polymer-based core–shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core–shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site. Full article
(This article belongs to the Special Issue Polymeric Nanocapsules in Drug Delivery, Volume Ⅱ)
Show Figures

Figure 1

26 pages, 8019 KB  
Article
Uridine Derivatives: Synthesis, Biological Evaluation, and In Silico Studies as Antimicrobial and Anticancer Agents
by Nasrin S. Munia, Mohammed M. Alanazi, Youness El Bakri, Ashwag S. Alanazi, Yousef E. Mukhrish, Imtiaj Hasan and Sarkar M. A. Kawsar
Medicina 2023, 59(6), 1107; https://doi.org/10.3390/medicina59061107 - 7 Jun 2023
Cited by 16 | Viewed by 3557
Abstract
Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and [...] Read more.
Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2′,3′-di-O-cinnamoyl-5′-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure–activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s). Full article
(This article belongs to the Special Issue The Promising Future of Anti-tumor Drugs)
Show Figures

Figure 1

28 pages, 3854 KB  
Article
An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species
by Octavia Gligor, Simona Clichici, Remus Moldovan, Nicoleta Decea, Ana-Maria Vlase, Ionel Fizeșan, Anca Pop, Piroska Virag, Gabriela Adriana Filip, Laurian Vlase and Gianina Crișan
Plants 2023, 12(9), 1840; https://doi.org/10.3390/plants12091840 - 29 Apr 2023
Cited by 10 | Viewed by 3655
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with [...] Read more.
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549—human lung adenocarcinoma and T47D-KBluc—human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL—xanthatin, 4.611 µg/mL—4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL—cafestol, 265.507 µg/mL—4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL—ononin, 102.78 µg/mL—biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

16 pages, 4646 KB  
Article
Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors
by Tatiana Zamay, Sergey Zamay, Natalia Luzan, Victoriya Fedotovskaya, Albert Masyugin, Fyodor Zelenov, Anastasia Koshmanova, Elena Nikolaeva, Daria Kirichenko, Dmitry Veprintsev, Olga Kolovskaya, Irina Shchugoreva, Galina Zamay, Ivan Lapin, Anna Lukyanenko, Andrey Borus, Alexander Sukhachev, Mikhail Volochaev, Kirill Lukyanenko, Alexandr Shabanov, Vladimir Zabluda, Alexey Zhizhchenko, Aleksandr Kuchmizhak, Alexey Sokolov, Andrey Narodov, Vladimir Prokopenko, Rinat Galeev, Valery Svetlichnyi and Anna Kichkailoadd Show full author list remove Hide full author list
J. Funct. Biomater. 2023, 14(4), 179; https://doi.org/10.3390/jfb14040179 - 24 Mar 2023
Cited by 4 | Viewed by 3083
Abstract
One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization [...] Read more.
One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument (“smart nanoscalpel”) at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the “Nanoscalpel” in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a “smart nanoscalpel” is practical for the microsurgery of malignant neoplasms. Full article
(This article belongs to the Special Issue Metallic Biomaterials for Medical Applications)
Show Figures

Graphical abstract

22 pages, 5590 KB  
Article
Novel Benzimidazole Derived Imine Ligand and Its Co(III) and Cu(II) Complexes as Anticancer Agents: Chemical Synthesis, DFT Studies, In Vitro and In Vivo Biological Investigations
by Prakasha G, H. D. Revanasiddappa, Jayalakshmi B, Prabhakar B. T, Chandan Shivamallu, Prashant M. Viswanath, Raghu Ram Achar, Ekaterina Silina, Victor Stupin, Natalia Manturova, Ali A. Shati, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Sanja J. Armaković, Stevan Armaković and Shiva Prasad Kollur
Pharmaceuticals 2023, 16(1), 125; https://doi.org/10.3390/ph16010125 - 13 Jan 2023
Cited by 12 | Viewed by 4294
Abstract
The emerging interest in the field of coordination chemistry and their biological applications has created a novel impact in the field of chemical biology. With this motivation, in this work we have synthesized a novel benzimidazole derived imine ligand, 2-((E)-((1H-benzo[d]-2-yl)methylimino)methyl)-4-fluorophenol (HBMF) [...] Read more.
The emerging interest in the field of coordination chemistry and their biological applications has created a novel impact in the field of chemical biology. With this motivation, in this work we have synthesized a novel benzimidazole derived imine ligand, 2-((E)-((1H-benzo[d]-2-yl)methylimino)methyl)-4-fluorophenol (HBMF) and its Co(III) and Cu(II) complexes. The metal complexes (C1C4) were synthesized in 2:1 (HBMF: metal ion) and 1:1:1 (HBMF: metal ion: 1,10-phen) ratios. Structural elucidations of all the synthesized compounds were performed using FT-IR, UV-Visible, NMR, Mass spectroscopy and elemental analysis techniques. A combination of first principles calculations and molecular dynamics simulations was applied to computationally investigate the structural, reactive, and spectroscopic properties of the newly synthesized HBMF ligand and its complexes with copper and cobalt metal ions. Quantum-mechanical calculations in this study were based on the density functional theory (DFT), while molecular dynamics (MD) simulations were based on the OPLS4 force field. The DFT calculations were used to obtain the reactive and spectroscopic properties of the ligand and its complexes, while molecular dynamics (MD) simulations were used to address the ligand’s reactivity with water. Further, the in vitro anti-proliferative activity of the compounds was tested against the A549, Ehrlich–Lettre ascites carcinoma (EAC), SIHA and NIH3T3 cell lines. The biological results depicted that the compound C4, with molecular formula C27H23Cl2CoFN5O3 exhibited profound anti-proliferative activity against the EAC cell line with a significant IC50 value of 10 µm when compared to its parent ligand and other remaining metal complexes under study. Various assays of hematological parameters (alkaline phosphate, creatinine, urea, RBC and WBC) were performed, and significant results were obtained from the experiments. Furthermore, the effect of C4 on neovascularization was evaluated by stimulating the angiogenesis with rVEGF165, which was compared with non-tumor models. The EAC cells were cultured in vivo and administrated with 50 and 75 mg/kg of two doses and tumor parameters were evaluated. Full article
Show Figures

Figure 1

21 pages, 4353 KB  
Article
Core–Shell Fe3O4@C Nanoparticles for the Organic Dye Adsorption and Targeted Magneto-Mechanical Destruction of Ehrlich Ascites Carcinoma Cells
by Oxana S. Ivanova, Irina S. Edelman, Chun-Rong Lin, Evgeniy S. Svetlitsky, Alexey E. Sokolov, Kirill A. Lukyanenko, Alexander L. Sukhachev, Nikolay P. Shestakov, Ying-Zhen Chen and Aleksandr A. Spivakov
Materials 2023, 16(1), 23; https://doi.org/10.3390/ma16010023 - 20 Dec 2022
Cited by 11 | Viewed by 3449
Abstract
The morphology, structure, and magnetic properties of Fe3O4 and Fe3O4@C nanoparticles, as well their effectiveness for organic dye adsorption and targeted destruction of carcinoma cells, were studied. The nanoparticles exhibited a high magnetic saturation value (79.4 [...] Read more.
The morphology, structure, and magnetic properties of Fe3O4 and Fe3O4@C nanoparticles, as well their effectiveness for organic dye adsorption and targeted destruction of carcinoma cells, were studied. The nanoparticles exhibited a high magnetic saturation value (79.4 and 63.8 emu/g, correspondingly) to facilitate magnetic separation. It has been shown that surface properties play a key role in the adsorption process. Both types of organic dyes—cationic (Rhodomine C) and anionic (Congo Red and Eosine)—were well adsorbed by the Fe3O4 nanoparticles’ surface, and the adsorption process was described by the polymolecular adsorption model with a maximum adsorption capacity of 58, 22, and 14 mg/g for Congo Red, Eosine, and Rhodomine C, correspondingly. In this case, the kinetic data were described well by the pseudo-first-order model. Carbon-coated particles selectively adsorbed only cationic dyes, and the adsorption process for Methylene Blue was described by the Freundlich model, with a maximum adsorption capacity of 14 mg/g. For the case of Rhodomine C, the adsorption isotherm has a polymolecular character with a maximum adsorption capacity of 34 mg/g. To realize the targeted destruction of the carcinoma cells, the Fe3O4@C nanoparticles were functionalized with aptamers, and an experiment on the Ehrlich ascetic carcinoma cells’ destruction was carried out successively using a low-frequency alternating magnetic field. The number of cells destroyed as a result of their interaction with Fe3O4@C nanoparticles in an alternating magnetic field was 27%, compared with the number of naturally dead control cells of 6%. Full article
(This article belongs to the Special Issue Functional Nanomaterials for a Better Life)
Show Figures

Figure 1

13 pages, 1784 KB  
Article
Root Bark Extract of Oroxylum indicum Vent. Inhibits Solid and Ascites Tumors and Prevents the Development of DMBA-Induced Skin Papilloma Formation
by Seema Menon, Jawaher J. Albaqami, Hamida Hamdi, Lincy Lawrence, Menon Kunnathully Divya, Liya Antony, Jose Padikkala, Shaji E. Mathew and Arunaksharan Narayanankutty
Molecules 2022, 27(23), 8459; https://doi.org/10.3390/molecules27238459 - 2 Dec 2022
Cited by 6 | Viewed by 2652
Abstract
Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton’s lymphoma ascites [...] Read more.
Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton’s lymphoma ascites tumor cells (DLA) and Ehrlich ascites carcinoma (EAC)-induced solid and ascites tumors. Further, the potential of O. indicum extract (OIM) on skin papilloma induction by dimethyl benz(a) anthracene (DMBA) and croton oil was evaluated. The chemical composition of the extract was analyzed using UPLC-Q-TOF-MS. The predominant compounds present in the extract were demethoxycentaureidin 7-O-rutinoside, isorhamnetin-3-O-rutinoside, baicalein-7-O-glucuronide, 5,6,7-trihydroxyflavone, 3-Hydroxy-3′,4′,5′-trimethoxyflavone, 5,7-dihydroxy-3-(4-methoxyphenyl) chromen-4-one, and 4′-Hydroxy-5,7-dimethoxyflavanone. Treatment with high-dose OIM enhanced the percentage of survival in ascites tumor-bearing mice by 34.97%. Likewise, high and low doses of OIM reduced the tumor volume in mice by 61.84% and 54.21%, respectively. Further, the skin papilloma formation was brought down by the administration of low- and high-dose groups of OIM (by 67.51% and 75.63%). Overall, the study concludes that the Oroxylum indicum root bark extract is a potentially active antitumor and anticancer agent. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Human Health)
Show Figures

Figure 1

Back to TopTop