Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = FeS2/C nanomaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

12 pages, 1982 KB  
Article
Tailoring Fe-Pt Composite Nanostructures Through Iron Precursor Selection in Aqueous Low-Temperature Synthesis
by Anna N. Prigorodova, Nikita S. Zakharov, Valery M. Pugachev, Alexander N. Shmakov, Nickolay S. Adodin and Dmitry M. Russakov
J. Compos. Sci. 2025, 9(11), 616; https://doi.org/10.3390/jcs9110616 - 8 Nov 2025
Viewed by 126
Abstract
This study addresses the challenge of low-temperature synthesis of the high-performance L10 Fe-Pt intermetallic phase, which is critical for applications in ultra-high-density data storage and advanced magnetic devices. We demonstrate that the choice of iron precursor is a decisive factor in directing [...] Read more.
This study addresses the challenge of low-temperature synthesis of the high-performance L10 Fe-Pt intermetallic phase, which is critical for applications in ultra-high-density data storage and advanced magnetic devices. We demonstrate that the choice of iron precursor is a decisive factor in directing the phase composition and thermal evolution of Fe-Pt nanostructures, ultimately determining their suitability as functional composite materials. Fe-Pt systems were synthesized from aqueous solutions using platinum(IV) chloric acid (H2PtCl6) with either iron(III) ammonium sulfate (NH4Fe(SO4)2) or iron(II) sulfate (FeSO4). Comprehensive characterization using X-ray diffraction and high-resolution transmission electron microscopy revealed distinct composite formations. The iron(III) precursor yielded homogeneous, thermally stable nanocomposites: as-synthesized nanoparticles formed a Pt-based FCC solid solution (~5 nm), which upon annealing at 500 °C transformed into a biphasic nanocomposite of FCC solid solution and an L12 Fe21Pt79 intermetallic phase with minimal grain growth (~7 nm). In stark contrast, the system derived from iron(II) sulfate resulted in a heterogeneous composite of 4 nm Pt nanoparticles, an FCC solid solution, and discrete 1–3 nm Fe nanoparticles with L12-ordered FePt3 domains. Annealing this heterogeneous mixture caused phase segregation, forming significantly coarsened Pt-rich crystals (~30 nm) that were approximately 4–6 times larger than the crystallites in the annealed homogeneous composite, with negligible Fe incorporation. Our findings establish that precursor chemistry dictates the initial nanocomposite architecture, which in turn controls the pathway and success of low-temperature intermetallic phase formation. This work provides a crucial design principle for fabricating tailored Fe-Pt composite nanomaterials, moving beyond simple alloys to engineered multiphase systems for practical application. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

22 pages, 5674 KB  
Article
Numerical Modeling and Multiscale Evaluation of Fe3O4–Graphene Oxide Nanofluids in Electromagnetic Heating for Colombian Heavy Oil Recovery
by Paola A. León, Andres F. Ortíz, Jimena Gómez-Delgado, Daniela Barrera, Fabian Tapias, Nicolas Santos and Enrique Mejía-Ospino
Energies 2025, 18(22), 5868; https://doi.org/10.3390/en18225868 - 7 Nov 2025
Viewed by 212
Abstract
Electromagnetic heating (EMH) using microwaves has emerged as a promising enhanced oil recovery (EOR) technique, particularly for heavy crude oils where conventional thermal methods encounter technical and environmental challenges. However, its large-scale implementation remains limited due to incomplete understanding of its energy transfer [...] Read more.
Electromagnetic heating (EMH) using microwaves has emerged as a promising enhanced oil recovery (EOR) technique, particularly for heavy crude oils where conventional thermal methods encounter technical and environmental challenges. However, its large-scale implementation remains limited due to incomplete understanding of its energy transfer mechanisms. This study proposes an experimental–numerical approach integrating magnetic graphene oxide nanoparticles (Fe3O4@GO) with microwave heating to enhance energy absorption near the wellbore. The nanomaterial was synthesized via a modified Hummer’s method followed by in situ magnetite precipitation and studied through multiple material characterization techniques showing uniform 80 nm particles with superparamagnetic behavior—ideal for EMH applications. Nine experiments were conducted on sand–heavy-oil–water systems with nanoparticle concentrations up to 500 ppm using a laboratory microwave heating prototype. A simulation model was then developed in CMG-STARS for history matching to estimate energy absorption as a function of saturation and nanoparticle concentration. Experiments reached temperatures up to 240 °C, with 653 MJ of effective heat transferred to the target zone over 55 h, as estimated from the input heat required in the simulator for history matching. The results confirm that magnetic graphene oxide nanoparticles enhance thermal efficiency and heat distribution in microwave-assisted EOR. Full article
Show Figures

Figure 1

19 pages, 7946 KB  
Article
Synergistic Disinfection of Photocatalytic Nanomaterials Exposed to UVC, Electricity and Magnetic Fields Against Candida albicans
by María Cristina Grijalva-Castillo, Renee Joselin Saénz-Hernández, Adrián Alberto Cobos-Márquez, Francisco Alonso Herrera-Ojeda, Fernando Efraín Díaz-Chávez, Irving Ricardo Acosta-Galindo, César Leyva-Porras, Alva Rocío Castillo-González, María Alejandra Favila-Pérez, Celia María Quiñonez-Flores, Javier Camarillo Cisneros and Carlos Arzate-Quintana
Coatings 2025, 15(8), 968; https://doi.org/10.3390/coatings15080968 - 19 Aug 2025
Viewed by 1014
Abstract
Nosocomial infections caused by Candida albicans pose serious challenges to healthcare systems due to their persistence on medical surfaces and resistance to conventional disinfectants. This study evaluates antifungal properties of SnO2 doped with silver and cuprite nanoparticles and WO3 thin films, [...] Read more.
Nosocomial infections caused by Candida albicans pose serious challenges to healthcare systems due to their persistence on medical surfaces and resistance to conventional disinfectants. This study evaluates antifungal properties of SnO2 doped with silver and cuprite nanoparticles and WO3 thin films, as well as cobalt (CoFe2O4) and cobalt–nickel (Co0.5Ni0.5Fe2O4) ferrite nanoparticles, activated by ultraviolet C (UVC) radiation, direct electric current (up to 100 V), and magnetic fields. SnO2 films were synthesized by Spray Pyrolysis and WO3 by Sputtering deposition, Ferrites nanoparticles by sol–gel, while metallic nanoparticles were synthetized via chemical reduction. Characterization consisted mainly of SEM, TEM, and XRD, and their antimicrobial activity was tested against C. albicans. WO3 films achieved 86.2% fungal inhibition after 5 min of UVC exposure. SnO2 films doped with nanoparticles reached 100% inhibition when combined with UVC and 100 V. Ferrite nanoparticles alone showed moderate activity (21.9%–40.4%) but exhibited strong surface adhesion to fungal cells, indicating potential for magnetically guided antifungal therapies. These results demonstrate the feasibility of using multifunctional nanomaterials for rapid, non-chemical disinfection. The materials are low-cost, scalable, and adaptable to hospital settings, making them promising candidates for reducing healthcare-associated fungal infections through advanced surface sterilization technologies. Full article
Show Figures

Figure 1

19 pages, 4569 KB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 894
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 3248 KB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 903
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

13 pages, 1429 KB  
Article
Rheological Characterization and Shale Inhibition Potential of Single- and Dual-Nanomaterial-Based Drilling Fluids for High-Pressure High-Temperature Wells
by Muhammad Waqiuddin Bin Irfan and Bashir Busahmin
Processes 2025, 13(7), 1957; https://doi.org/10.3390/pr13071957 - 20 Jun 2025
Viewed by 805
Abstract
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance [...] Read more.
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance rheological behavior and shale inhibition potential. Using secondary experimental datasets and computational modeling, five nanomaterials—SiO2, Al2O3, TiO2, Fe2O3, and Fe3O4—were evaluated individually and in dual combinations with polymers. Key performance metrics, including plastic viscosity, fluid loss, and shale recovery, were analyzed and fitted to the Herschel–Bulkley rheological model. The results showed that single-nanomaterial systems modestly improved viscosity and fluid loss control, with SiO2 and Fe2O3 offering the best standalone performance. Dual systems—particularly SiO2–Al2O3 and Fe3O4–polymer combinations—demonstrated superior rheological performance with reduced viscosity (down to 19 cP), minimized fluid loss (<4 mL/30 min), and enhanced shale recovery (>90%). These improvements suggest synergistic effects between nanomaterials, supporting their use in designing advanced, thermally stable drilling fluids for extreme HPHT wells. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

17 pages, 1489 KB  
Article
Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics
by Buyun Du, Jiasai Fei, Laiyong You, Jing Zhou and Jun Zhou
Agronomy 2025, 15(6), 1423; https://doi.org/10.3390/agronomy15061423 - 11 Jun 2025
Viewed by 1325
Abstract
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w [...] Read more.
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w/w) were subjected to 40 day anaerobic and 20 day aerobic incubation. The results demonstrated that NCC and C+P elevated the soil pH by 1.35–1.39 and 0.72–1.01 units during the anaerobic and aerobic phases, respectively. These amendments suppressed Fe(II) and Mn(II) release by 41–75%, correlating with reduced Cd bioavailability. While nanomaterials minimally influenced Cd speciation during flooding, aerobic conditions triggered a marked shift: residual Cd fractions increased by 80.8–116.4% under NCC, driven by CdCO3 precipitation and phosphate complexation. Cd release rates decreased by 53.6–66.8% in NCC and C+P treatments during oxidation. Microbial analysis revealed diminished bacterial diversity but enriched Firmicutes (up to 58.9%), which positively correlated with pH and residual Cd. Redundancy analysis identified pH and Fe/Mn dynamics as key regulators of the microbial community structure. NCC emerged as the most effective amendment. This study highlights the potential of NCC-based strategies for mitigating Cd risks in acidic paddy soils, particularly during post-flooding drainage. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

15 pages, 37842 KB  
Article
First-Principles Calculations, Machine Learning and Monte Carlo Simulations of the Magnetic Coercivity of FexCo1−x Bulks and Nanoclusters
by Dou Du, Youwei Zhang, Xingwu Li and Namin Xiao
Nanomaterials 2025, 15(8), 577; https://doi.org/10.3390/nano15080577 - 10 Apr 2025
Cited by 2 | Viewed by 1270
Abstract
FeCo alloys, renowned for their exceptional magnetic properties, such as high saturation magnetization and elevated Curie temperatures, hold significant potential for various technological applications. This study combines density-functional theory (DFT) and Monte Carlo (MC) simulations to investigate the magnetic properties of FeCo alloys [...] Read more.
FeCo alloys, renowned for their exceptional magnetic properties, such as high saturation magnetization and elevated Curie temperatures, hold significant potential for various technological applications. This study combines density-functional theory (DFT) and Monte Carlo (MC) simulations to investigate the magnetic properties of FeCo alloys and nanoclusters. DFT-derived exchange coupling constants (Jij) and magnetic anisotropy (Ki) along with machine learning (ML) predicted spin vectors (Si) serve as inputs for the Monte Carlo framework, enabling a detailed exploration of magnetic coercivity (Hc) across different compositions and temperatures. The simulations reveal an optimal Fe concentration, particularly around Fe0.65Co0.35, where magnetic coercivity reaches its peak, aligning with experimental trends. A similar simulation procedure was conducted for a Fe58Co32 nanocluster at 300 K and 500 K, demonstrating magnetic behavior comparable to bulk materials. This integrative computational approach provides a powerful tool for simulating and understanding the magnetic properties of alloys and nanomaterials, thus aiding in the design of advanced magnetic materials. Full article
(This article belongs to the Special Issue Applications of 2D Materials in Nanoelectronics)
Show Figures

Figure 1

28 pages, 6457 KB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Cited by 2 | Viewed by 1901
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

13 pages, 3791 KB  
Article
γ-Fe2O3-Based MEMS Gas Sensor for Propane Detection
by Xiang Gao, Ying Chen, Pengcheng Xu, Dan Zheng and Xinxin Li
Electronics 2025, 14(5), 1050; https://doi.org/10.3390/electronics14051050 - 6 Mar 2025
Cited by 4 | Viewed by 2895
Abstract
The selective detection of propane gas molecules using semiconductor gas sensors has always been a challenge within research. In this study, we successfully synthesized a γ-Fe2O3 nanomaterial with a selective catalytic effect on propane and loaded it onto a ZnO [...] Read more.
The selective detection of propane gas molecules using semiconductor gas sensors has always been a challenge within research. In this study, we successfully synthesized a γ-Fe2O3 nanomaterial with a selective catalytic effect on propane and loaded it onto a ZnO sensing material to construct a double-layer microsensor, which showed good sensing response characteristics in the detection of the refrigerant R290 (which is mainly propane). In addition, we also prepared a series of iron oxides, including nanomaterials such as α-Fe2O3, Fe3O4, and FeO, as well as γ-Fe2O3 materials with different specific surface areas obtained at various processing temperatures, and we carried out gas sensing research on R290. The results show that the γ-Fe2O3 material has a better sensitivity to R290, and the γ-Fe2O3 material calcined at 200 °C shows the best performance. Our results can provide a theoretical basis for the design and optimization of semiconductor gas sensors for alkane detection. Full article
Show Figures

Graphical abstract

13 pages, 4193 KB  
Article
Synthesis and Molecular Structure of Iron(III) Diaryl-Dithiocarbamate Complexes, [Fe(S2CNAr2)3], and a Preliminary Study Exploring Their Potential as Single-Source Precursors for Nanoscale Iron Sulfides
by Jagodish C. Sarker, Tannith-Jade Cole, Xiang Xu, Firoz Alam, Paul D. McNaughter, Jeremy K. Cockcroft, David J. Lewis and Graeme Hogarth
Inorganics 2025, 13(3), 70; https://doi.org/10.3390/inorganics13030070 - 26 Feb 2025
Viewed by 1123
Abstract
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O [...] Read more.
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O in water-air affords dark red [Fe(S2CNAr2)3] in high yields. All show magnetic measurements consistent with a predominantly high-spin electronic arrangement at room temperature. The molecular structure of [Fe{S2C(N-p-MeOC6H4)2}3] reveals the expected distorted octahedral geometry, but Fe-S distances are more consistent with a low-spin electronic configuration, likely a result of the low temperature (120 K) of the data collection. The thermal stability of [Fe{S2C(N-p-MeC6H4)2}3] has been investigated. TGA shows that it begins to decompose at a significantly lower temperature (ca. 160 °C) than previously observed for [Fe(S2CNEt2)3], and this is further lowered (to ca. 100 °C) in oleylamine. The decomposition of [Fe{S2C(N-p-MeC6H4)2}3] in oleylamine, via either a heat-up or hot injection process, affords nanoparticles of Fe3S4 (greigite), while in contrast, dry heating at 450 °C affords FeS (troilite) as large agglomerates. Full article
Show Figures

Graphical abstract

20 pages, 6732 KB  
Article
Preparation of Recyclable Magnetic Catalyst (Pd/PDA@Fe3O4) and the Catalytic Degradation of 4-Nitrophenol and Rhodamine B
by Wei Wang, Jiaqi Liu, Guang Shi, Shiqi Wu, Shihan Zhang and Ruixia Yuan
Catalysts 2025, 15(2), 175; https://doi.org/10.3390/catal15020175 - 13 Feb 2025
Cited by 4 | Viewed by 1679
Abstract
A magnetic shell-structured nano-catalyst was prepared by self-polymerization of dopamine wrapped by ferric oxide as the carrier, which was loaded with palladium nanoparticles (Pd/PDA@Fe3O4). The presence of magnetic Fe3O4 made it easy for nanoscale palladium particles [...] Read more.
A magnetic shell-structured nano-catalyst was prepared by self-polymerization of dopamine wrapped by ferric oxide as the carrier, which was loaded with palladium nanoparticles (Pd/PDA@Fe3O4). The presence of magnetic Fe3O4 made it easy for nanoscale palladium particles to recover and prevent the loss of palladium nanoparticles that is unavoidable in traditional usage and preparation procedures. The catalyst was characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, thermal weight loss analysis, Raman spectroscopy, X-ray photo-electron spectroscopy, and magnetic properties analysis. The catalytic performance of the prepared catalyst was investigated taking 4-nitrophenol (10 mg/L) and rhodamine B (15 mg/L) as the target pollutants. The results showed that under the conditions of 35 °C, pH = 7 and a catalyst dosage of 3 mg, the catalytic reduction efficiency of 4-nitrophenol, rhodamine B, and the mixture of them all can reach 99%. The catalytic efficiency of Pd/PDA@Fe3O4 remained above 90% after being used 10 times. The shell structure of Fe3O4 made it possible and easy to recover and recycle the nanoscale palladium, which was a real problem in the usage of nano-catalysts. At the same time, the problem of separation and recovery of palladium nano-catalyst is solved by magnetism, which provides research ideas for the recycling and utilization of nano-materials. Full article
Show Figures

Figure 1

24 pages, 19084 KB  
Article
Interface Optimisation of the Fe2O3/C3N4 Heterojunction with Metal Nanoparticles and Their Negative and Positive Photoelectric Responses in a Broadband Light Spectrum Range
by Xingfa Ma, Caiwei Li, Xintao Zhang, Mingjun Gao, You Wang and Guang Li
Coatings 2024, 14(12), 1595; https://doi.org/10.3390/coatings14121595 - 19 Dec 2024
Cited by 5 | Viewed by 1335
Abstract
In order to improve the charge transfer properties and reduce the recombination of photogenerated carriers, an Fe2O3/C3N4 heterojunction was constructed to increase the built-in field. The grain boundary of the Fe2O3/C3 [...] Read more.
In order to improve the charge transfer properties and reduce the recombination of photogenerated carriers, an Fe2O3/C3N4 heterojunction was constructed to increase the built-in field. The grain boundary of the Fe2O3/C3N4 nanocomposite was filled with Cu, Au, Pt, and Pd nanoparticles using in situ synthesis. The nanometal-modified heterostructures showed good absorption in the visible and near-infrared (NIR) regions. The photocurrent responses to the light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes. The results indicated that the nanocomposite exhibits photocurrent switching behaviour towards the visible-light and NIR regions. Interestingly, the reversible photocurrent response phenomenon (transition from negative to positive photoconductivity) was observed before and after passivation of the grain boundary defects of the Fe2O3/C3N4 heterojunction with metal nanoparticles. The physical mechanisms involved were discussed. The Cu nanomaterials played donor effects in the interfacial tailoring of the Fe2O3/C3N4 heterojunction since Cu nanoparticles possess a high concentration of free electrons. It was shown that defects in the nanocomposites play an important role in the photoelectric behaviour and that modulation of the defects not only enhances photocurrent acquisition but also determines the polarity of the photocurrent. This study provides useful guidance not only for microstructure modulation and interdisciplinary applications of the materials themselves but also for the study of light–matter interactions. Full article
(This article belongs to the Special Issue Advances in Nanostructured Thin Films and Coatings, 2nd Edition)
Show Figures

Figure 1

17 pages, 4662 KB  
Article
Fast Determination of Eleven Food Additives in River Water Using C18 Functionalized Magnetic Organic Polymer Nanocomposite Followed by High-Performance Liquid Chromatography
by Chao Lei, Shun Zhang, Wen-Xin Liu, Ming-Li Ye and Yong-Gang Zhao
Molecules 2024, 29(15), 3675; https://doi.org/10.3390/molecules29153675 - 2 Aug 2024
Cited by 4 | Viewed by 1857
Abstract
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18−PS−DVB−Fe3O4) had been synthesized by seeded emulsion polymerization. C18−PS−DVB−Fe3O4 retains the advantages of [...] Read more.
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18−PS−DVB−Fe3O4) had been synthesized by seeded emulsion polymerization. C18−PS−DVB−Fe3O4 retains the advantages of the chemical stability, large porosity, and uniform morphology of organic polymers and has the magnetic properties of Fe3O4. A simple, flexible, and efficient magnetic dispersive solid phase extraction (Mag-dSPE) method for the extraction of preservatives, sweeteners, and colorants in river water was established. C18−PS−DVB−Fe3O4 was used as an adsorbent for Mag-dSPE and was coupled with high-performance liquid chromatography (HPLC) to detect 11 food additives: acesulfame, amaranth, benzoic acid, tartrazine, saccharin sodium, sorbic acid, dehydroacetic acid, sunset yellow, allura red, brilliant blue, and erythrosine. Under the optimum extraction conditions, combined with ChromCoreTMAQC18 (5 μm, 4.6 × 250 mm), 20 mmol/L ammonium acetate aqueous solution and methanol were used as mobile phases, and the detection wavelengths were 240 nm and 410 nm. The limits of detection (LODs) of 11 food additives were 0.6–3.1 μg/L with satisfactory recoveries ranging from 86.53% to 106.32%. And the material could be reused for five cycles without much sacrifice of extraction efficiency. The proposed method has been used to determine food additives in river water samples, and results demonstrate the applicability of the proposed C18−PS−DVB−Fe3O4 Mag-dSPE coupled with the HPLC method to environment monitoring analysis. Full article
(This article belongs to the Topic Application of Nanomaterials in Environmental Analysis)
Show Figures

Figure 1

Back to TopTop