Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = FtSnRK2.6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3179 KB  
Article
Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse
by Hui-Ling Wu, Sui-Lin Zhang, Xin Feng, Ya-Qian Zhang, Bing-Jie Zhou, Man Cao, Ya-Ping Wang, Bao-Shi Guo and Zhi-Xia Hou
Plants 2024, 13(17), 2350; https://doi.org/10.3390/plants13172350 - 23 Aug 2024
Cited by 2 | Viewed by 1872
Abstract
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed [...] Read more.
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

16 pages, 5221 KB  
Article
FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat
by Shuangshuang Liu, Jianmei Wang, Zhibin Liu, Yi Yang and Xiaoyi Li
Curr. Issues Mol. Biol. 2023, 45(4), 3375-3390; https://doi.org/10.3390/cimb45040221 - 13 Apr 2023
Cited by 2 | Viewed by 2045
Abstract
As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes’ biosynthesis of flavonoids. In this [...] Read more.
As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes’ biosynthesis of flavonoids. In this study, a basic leucine zipper, basic leucine zipper 85 (FtbZIP85), which was predominantly expressed in seeds, was isolated from Tartary buckwheat. Our study shows that the expressions of FtDFR, FtbZIP85 and FtSnRK2.6 were tissue-specific and located in both the nucleus and the cytosol. FtbZIP85 could positively regulate PA biosynthesis by binding to the ABA-responsive element (ABRE) in the promoter of dihydroflavonol 4-reductase (FtDFR), which is a key enzyme in the phenylpropanoid biosynthetic pathway. Additionally, FtbZIP85 was also involved in the regulation of PA biosynthesis via interactions with FtSnRK2.6 but not with FtSnRK2.2/2.3. This study reveals that FtbZIP85 is a positive regulator of PA biosynthesis in TB. Full article
(This article belongs to the Special Issue Stress and Signal Transduction in Plants)
Show Figures

Figure 1

13 pages, 1965 KB  
Article
Genome-Wide Identification and Expression Analysis of Senescence-Associated Genes in Grapevine (Vitis vinifera L.) Reveal Their Potential Functions in Leaf Senescence Order
by You-Mei Li, Meng-Hao Sun, Xuan-Si Tang, Chao-Ping Wang and Zhao-Sen Xie
Int. J. Mol. Sci. 2022, 23(21), 12731; https://doi.org/10.3390/ijms232112731 - 22 Oct 2022
Cited by 4 | Viewed by 2209
Abstract
Natural leaf senescence is an acclimation strategy that enables plants to reallocate nutrients. In the present study, interestingly, we found that the basal mature leaves of grapevine primary shoots (P) exhibited the earliest senescence, followed by the apical young leaves of secondary shoots [...] Read more.
Natural leaf senescence is an acclimation strategy that enables plants to reallocate nutrients. In the present study, interestingly, we found that the basal mature leaves of grapevine primary shoots (P) exhibited the earliest senescence, followed by the apical young leaves of secondary shoots (ST), and then the basal mature leaves of secondary shoots (S). The Chl level decreased with the extent of leaf senescence. According to the genome-wide identification and expression analysis, sixteen senescence-associated genes (SAGs) involved in Chl breakdown were identified in the grapevine genome. Their expression patterns showed that the transcript changes in VvSGR, VvPPH2, and VvFtsH6-2 corresponded to the changes in Chl content among P, S, and ST. The changes in the transcription of VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1 only contributed to low Chl levels in P. The cis-element analysis indicated that these SAGs possessed several light- and hormone-responsive elements in their promoters. Among them, ABA-responsive elements were found in twelve of the sixteen promoters of SAGs. Correspondingly, ABA-signaling components presented various changes in transcription among P, S, and ST. The transcription changes in VvbZIP45 and VvSnRK2.1 were similar to those in VvSGR, VvPPH2, and VvFtsH6-2. The other nine ABA-signaling components, which included VvRCAR2, VvRCAR4, VvRCAR6, VvRCAR7, VvRCAR2, VvPP2C4, VvPP2C9, VvbZIP25, and VvSnRK2.3, were highly expressed in P but there was no difference between S and ST, with similar expression patterns for VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1. These results suggested that the senescence of P and ST could be regulated by different members of Chl breakdown-related SAGs and ABA-signaling components. These findings provide us with important candidate genes to further study the regulation mechanism of leaf senescence order in grapevine. Full article
(This article belongs to the Special Issue The Comparative Genomics and Functional Genomics Analyses in Plants)
Show Figures

Figure 1

16 pages, 4689 KB  
Article
DNA Demethylation Induces Tree Peony Flowering with a Low Deformity Rate Compared to Gibberellin by Inducing PsFT Expression under Forcing Culture Conditions
by Kairong Sun, Yuqian Xue, Zeljana Prijic, Shunli Wang, Tatjana Markovic, Caihuan Tian, Yingying Wang, Jingqi Xue and Xiuxin Zhang
Int. J. Mol. Sci. 2022, 23(12), 6632; https://doi.org/10.3390/ijms23126632 - 14 Jun 2022
Cited by 12 | Viewed by 3005
Abstract
Gibberellin (GA) is frequently used in tree peony forcing culture, but inappropriate application often causes flower deformity. Here, 5-azacytidine (5-azaC), an efficient DNA demethylating reagent, induced tree peony flowering with a low deformity rate by rapidly inducing PsFT expression, whereas GA treatment affected [...] Read more.
Gibberellin (GA) is frequently used in tree peony forcing culture, but inappropriate application often causes flower deformity. Here, 5-azacytidine (5-azaC), an efficient DNA demethylating reagent, induced tree peony flowering with a low deformity rate by rapidly inducing PsFT expression, whereas GA treatment affected various flowering pathway genes with strong pleiotropy. The 5-azaC treatment, but not GA, significantly reduced the methylation level in the PsFT promoter with the demethylation of five CG contexts in a 369 bp CG-rich region, and eight light-responsive related cis-elements were also predicted in this region, accompanied by enhanced leaf photosynthetic efficiency. Through GO analysis, all methylation-closer differentially expressed genes (DEGs) were located in the thylakoid, the main site for photosynthesis, and were mainly involved in response to stimulus and single-organism process, whereas GA-closer DEGs had a wider distribution inside and outside of cells, associated with 12 categories of processes and regulations. We further mapped five candidate DEGs with potential flowering regulation, including three kinases (SnRK1, WAK2, and 5PTase7) and two bioactive enzymes (cytochrome P450 and SBH1). In summary, 5-azaC and GA may have individual roles in inducing tree peony flowering, and 5-azaC could be a preferable regulation approach; DNA demethylation is suggested to be more focused on flowering regulation with PsFT playing a core role through promoter demethylation. In addition, 5-azaC may partially undertake or replace the light-signal function, combined with other factors, such as SnRK1, in regulating flowering. This work provides new ideas for improving tree peony forcing culture technology. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 7088 KB  
Article
Tartary Buckwheat Transcription Factor FtbZIP5, Regulated by FtSnRK2.6, Can Improve Salt/Drought Resistance in Transgenic Arabidopsis
by Qi Li, Haixia Zhao, Xiaoli Wang, Jingyue Kang, Bingbing Lv, Qixin Dong, Chenglei Li, Hui Chen and Qi Wu
Int. J. Mol. Sci. 2020, 21(3), 1123; https://doi.org/10.3390/ijms21031123 - 7 Feb 2020
Cited by 56 | Viewed by 4872
Abstract
bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a [...] Read more.
bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a novel bZIP gene, FtbZIP5, was isolated from tartary buckwheat, and its role in the response to drought and salt stress was characterized by transgenic Arabidopsis. We found that FtbZIP5 has transcriptional activation activity, which is located in the nucleus and specifically binds to ABRE elements. It can be induced by exposure to PEG6000, salt and ABA in tartary buckwheat. The ectopic expression of FtbZIP5 reduced the sensitivity of transgenic plants to drought and high salt levels and reduced the oxidative damage in plants by regulating the antioxidant system at a physiological level. In addition, we found that, under drought and salt stress, the expression levels of several ABA-dependent stress response genes (RD29A, RD29B, RAB18, RD26, RD20 and COR15) in the transgenic plants increased significantly compared with their expression levels in the wild type plants. Ectopic expression of FtbZIP5 in Arabidopsis can partially complement the function of the ABA-insensitive mutant abi5-1 (abscisic acid-insensitive 5-1). Moreover, we screened FtSnRK2.6, which might phosphorylate FtbZIP5, in a yeast two-hybrid experiment. Taken together, these results suggest that FtbZIP5, as a positive regulator, mediates plant tolerance to salt and drought through ABA-dependent signaling pathways. Full article
(This article belongs to the Special Issue ROS and Abiotic Stress in Plants)
Show Figures

Figure 1

Back to TopTop