Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = Fusarium tricinctum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2341 KB  
Article
Genome Sequencing of a Fusarium Endophytic Isolate from Hazelnut: Phylogenetic and Metabolomic Implications
by Andrea Becchimanzi, Beata Zimowska, Marina Maura Calandrelli, Luigi De Masi and Rosario Nicoletti
Int. J. Mol. Sci. 2025, 26(9), 4377; https://doi.org/10.3390/ijms26094377 - 5 May 2025
Viewed by 1036
Abstract
This study reports on the whole genome sequencing of the hazelnut endophytic Fusarium isolate Hzn5 from Poland. It was identified as a member of the Fusarium citricola species complex based on a phylogenetic analysis which also pointed out that other hazelnut isolates, previously [...] Read more.
This study reports on the whole genome sequencing of the hazelnut endophytic Fusarium isolate Hzn5 from Poland. It was identified as a member of the Fusarium citricola species complex based on a phylogenetic analysis which also pointed out that other hazelnut isolates, previously identified as F. lateritium and F. tricinctum, actually belong to this species complex. Genome annotation allowed the mapping of 4491 different protein sequences to the genome assembly. A further in silico search for their potential biosynthetic activity showed that predicted genes are involved in 1110 metabolic pathways. Moreover, the analysis of the genome sequence carried out in comparison to another isolate, previously identified as an agent of hazelnut gray necrosis in Italy, revealed a homology to several regions containing biosynthetic gene clusters for bioactive secondary metabolites. The resulting indications for the biosynthetic aptitude concerning some emerging mycotoxins, such as the enniatins and culmorin, should be taken into consideration with reference to the possible contamination of hazelnuts and derived products. Full article
Show Figures

Figure 1

13 pages, 972 KB  
Article
Advanced rDNA-Based Detection of Wheat Pathogens in Grain Samples Using Next-Generation Sequencing (NGS)
by Katarzyna Pieczul, Ilona Świerczyńska and Andrzej Wójtowicz
Pathogens 2025, 14(2), 164; https://doi.org/10.3390/pathogens14020164 - 7 Feb 2025
Cited by 3 | Viewed by 1201
Abstract
High-throughput sequencing (HTS) has revolutionized phytopathology by overcoming many limitations of traditional diagnostic methods, as it permits precise pathogen monitoring, identification, and control, with ribosomal DNA (rDNA) regions serving as reliable markers for fungal classification. In this study, next-generation sequencing (NGS) was used, [...] Read more.
High-throughput sequencing (HTS) has revolutionized phytopathology by overcoming many limitations of traditional diagnostic methods, as it permits precise pathogen monitoring, identification, and control, with ribosomal DNA (rDNA) regions serving as reliable markers for fungal classification. In this study, next-generation sequencing (NGS) was used, targeting the ITS1 and ITS2 regions to explore fungal diversity and pathogen presence in winter wheat grain samples and identifying 183 OTU sequences across 115 taxa. The ITS1 analysis yielded 249,743 reads, with Fusarium sp. (61%) as the dominant pathogenic taxon, followed by Sporobolomyces sp. (14%), Cladosporium sp. (3%), and other yeast-like or saprotrophic fungi, such as Cryptoccocus spp., F. wieringae, and B. alba. Sequencing of ITS1 also permitted the detection of F. acuminatum and the quarantine-regulated pathogens T. caries and T. triticoides. The ITS2 analysis produced 179,675 reads, with F. culmorum (47%) as the most abundant taxon, confirming significant grain contamination with this pathogen. Other frequently detected taxa included yeast-like fungi such as C. tephrensis (21%) and V. victoriae (13%), along with saprotrophic species like S. roseus and Davidella sp. ITS2 provided better resolution for the identification of Fusarium species by the detection of more pathogenic taxa associated with cereal diseases, including F. culmorum, as well as F. cerealis, F. poae, and F. tricinctum. The analysis revealed a diverse fungal community, including other pathogens such as A. porri, B. cinerea, and C. herbarum, as well as various non-pathogenic and saprotrophic fungal taxa. These findings underscore the complementary utility of ITS1 and ITS2 in profiling fungal diversity and detecting critical pathogens using HTS, highlighting the potential of these DNA regions for monitoring and managing cereal crop health. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

15 pages, 5931 KB  
Article
Survey and Identification of Fusarium Head Blight Pathogens of Wheat in the Western Cape Region of South Africa
by Ali Al-Hashimi, Augustine Innalegwu Daniel, Omolola Aina, Morné Du Plessis, Marshall Keyster and Ashwil Klein
Pathogens 2025, 14(1), 80; https://doi.org/10.3390/pathogens14010080 - 16 Jan 2025
Cited by 1 | Viewed by 2439
Abstract
Fusarium head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple Fusarium species. In this study, seven Fusarium strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains [...] Read more.
Fusarium head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple Fusarium species. In this study, seven Fusarium strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the Fusarium graminearum species complex (FGSC), Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium tricinctum species complex (FTSC). Disease severity was highest in the South coast regions of Swellendam (42.73%) and Caledon (38.00%), with the dough stage of wheat development showing the highest disease rate (0.3 in Swellendam and Caledon). The phylogenetic analysis showed distinct clustering of these isolates with known species from the NCBI database, confirming their classification. F. ipomoeae was uniquely found in Swellendam and Caledon, while F. tricinctum occurred only in Klipheuwel and Caledon, highlighting geographical variation in species distribution. Mycotoxin profiling revealed that F. culmorum and F. pseudograminearum produced zearalenone, F. culmorum and F. tricinctum produced 15-acetyl-deoxynivalenol (15-ADON), while F. pseudograminearum produced nivalenol (NIV). These findings provide significant insights into the distribution of Fusarium species and their associated trichothecene chemotypes in the Western Cape, which is crucial for developing effective FHB management strategies and ensuring food security and safety. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

17 pages, 2607 KB  
Article
Identification and Pathogenicity of Fusarium Species from Herbaceous Plants on Grassland in Qiaojia County, China
by Yanzhu Gao, Zhixiao Zhang, Mei Ji, Sangzi Ze, Haodong Wang, Bin Yang, Lianrong Hu and Ning Zhao
Microorganisms 2025, 13(1), 113; https://doi.org/10.3390/microorganisms13010113 - 8 Jan 2025
Cited by 1 | Viewed by 2669
Abstract
The Fusarium species is an important plant pathogen that can cause plant diseases in grassland, leading to the degradation of grassland quality. However, the morphology of Fusarium is greatly affected by environmental factors, which makes it difficult to identify its species. In addition, [...] Read more.
The Fusarium species is an important plant pathogen that can cause plant diseases in grassland, leading to the degradation of grassland quality. However, the morphology of Fusarium is greatly affected by environmental factors, which makes it difficult to identify its species. In addition, the pathogenic ability of different Fusarium species in plants has not been fully studied. In this study, Fusarium isolates were obtained from grassland herbaceous plants via tissue separation. Through morphological means and based on ITS, RPB2, and TEF-1 gene sequences, we compared and constructed polygenic phylogenetic trees to classify and identify the Fusarium species. In addition, the pathogenicity of different Fusarium species was also analyzed. The results showed that a total of 24 Fusarium strains were successfully isolated from grassland, from which ten species were identified: F. flagelliforme, F. longifundum, F. clavum, F. scirpi, F. ipomoeae, F. oxysporum, etc. and were included in four complexes: Fusarium incarnatum-equiseti species complex (FIESC), Fusarium oxysporum species complex (FOSC), Fusarium tricinctum species complex (FTSC), and Fusarium sambucinum species complex (FSAMSC). Pathogenicity tests demonstrated that except for F. ipomoeae QJ5211, F. sambucinum QJ203, and F. acuminatum QJ1662, other Fusarium species had different degrees of pathogenic ability. This is the first study that discusses the effect of Fusarium on grassland disease control in this area. This study further provides clear pathogen information for the prevention and control of grassland diseases. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

15 pages, 1660 KB  
Article
Impact of Harvest Delay and Barley Variety on Grain Nutritional Composition and Mycotoxin Contamination
by Eimantas Venslovas, Yuliia Kochiieru, Sigita Janavičienė, Lauksmė Merkevičiūtė-Venslovė, Mohammad Almogdad, Vadims Bartkevics, Zane Bērziņa and Romans Pavlenko
J. Fungi 2024, 10(11), 738; https://doi.org/10.3390/jof10110738 - 24 Oct 2024
Cited by 2 | Viewed by 1918
Abstract
This study investigated the effects of delayed harvesting, varying meteorological conditions, and barley variety on Fusarium spp. infection rates, nutritional composition, and mycotoxin contamination in barley grains. Field experiments were conducted from 2020 to 2022 and involved two barley varieties: ‘Laureate’ for malting [...] Read more.
This study investigated the effects of delayed harvesting, varying meteorological conditions, and barley variety on Fusarium spp. infection rates, nutritional composition, and mycotoxin contamination in barley grains. Field experiments were conducted from 2020 to 2022 and involved two barley varieties: ‘Laureate’ for malting and ‘Luokė’ for feed. The results indicated that the dominant Fusarium species isolated were F. avenaceum, F. culmorum, F. poae, F. sporotrichioides, F. tricinctum, and F. equiseti. These tended to increase in number with delayed harvest times and were more prevalent during harvest periods of higher precipitation (p < 0.05). Malting barley had higher starch and lower protein content compared to feed barley (p < 0.05). Delayed harvesting generally increased dry matter, crude fat, and crude ash contents while decreasing crude protein, zinc, and iron contents (p < 0.05). Mycotoxin analysis revealed significant differences under specific weather conditions. HT-2 toxin levels were higher under slightly warmer and wetter conditions during flowering, with harvest conditions similar to the long-term average. Zearalenone levels increased with dry, warm growing seasons followed by rainy harvests. Nivalenol and enniatin levels increased with rainy growing seasons and dry, warm harvests. Deoxynivalenol concentrations did not reach the limit of quantification throughout the study. No consistent trend was observed for higher contamination in any specific barley variety (p > 0.05). The strongest correlations between mycotoxins and nutritional value indicators were observed with less-studied mycotoxins, such as nivalenol and enniatins, which exhibited negative correlations with crude protein (p < 0.01), crude fat (p < 0.05), and zinc (p < 0.01), and positive correlations with crude ash (p < 0.05) and phosphorus (p < 0.01). Full article
Show Figures

Figure 1

15 pages, 3061 KB  
Article
Bioprospecting Endophytic Fungi of Forest Plants for Bioactive Metabolites with Antibacterial, Antifungal, and Antioxidant Potentials
by El-Sayed R. El-Sayed, Abirami Baskaran, Oliwia Pomarańska, Daria Mykhailova, Anna Dunal, Anita Dudek, Sahil Satam, Tomasz Strzała, Jacek Łyczko, Teresa Olejniczak and Filip Boratyński
Molecules 2024, 29(19), 4746; https://doi.org/10.3390/molecules29194746 - 8 Oct 2024
Cited by 7 | Viewed by 2888
Abstract
The growing emergence of multi-drug resistant microbial strains has kept the scientific world searching for novel bioactive compounds with specific chemical characteristics. Accordingly, researchers have started exploring the understudied metabolites from endophytes as a new source of bioactive compounds. In this context, the [...] Read more.
The growing emergence of multi-drug resistant microbial strains has kept the scientific world searching for novel bioactive compounds with specific chemical characteristics. Accordingly, researchers have started exploring the understudied metabolites from endophytes as a new source of bioactive compounds. In this context, the current study was designed to evaluate the bioactive properties of endophytic fungi from the Mokrzański forest in Wrocław, Poland that have not yet been fully researched. Forty-three endophytic fungi were isolated from twelve distinct plants. Following their cultivation, fungal extracts were separately prepared from biomass and cell-free filtrates, and their antibacterial, antifungal (against human and plant pathogens), and antioxidant properties were examined. Five promising fungi after screening were identified to possess all of these activities. These strains and their respective plant hosts were Trichoderma harzianum BUK-T (Fagus sylvatica), Aspergillus ochraceus ROB-L1 (Robinia pseudoacacia), Chaetomium cochliodes KLON-L1, Fusarium tricinctum KLON-L2 (Acer platanoides), and Penicillium chrysogenum SOS-B2 (Pinus sylvestris). Moreover, gamma irradiation at several doses (Gy) was separately applied to the fungal cultures to study their effects on the recorded activities. Finally, compounds after preparative thin-layer chromatography fractionation of the five fungal strains were identified by GC-MS. These findings suggest that the isolated endophytic fungi could serve as novel sources of bioactive metabolites with antibacterial, antifungal, and antioxidant properties, potentially paving the way for future research and the development of new bioactive compounds. Full article
Show Figures

Figure 1

16 pages, 6402 KB  
Article
Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi
by Ilkham S. Aytenov, Tohir A. Bozorov, Daoyuan Zhang, Sitora A. Samadiy, Dono A. Muhammadova, Marufbek Z. Isokulov, Sojida M. Murodova, Ozoda R. Zakirova, Bakhodir Kh. Chinikulov and Anvar G. Sherimbetov
Pathogens 2024, 13(7), 585; https://doi.org/10.3390/pathogens13070585 - 15 Jul 2024
Cited by 3 | Viewed by 2637
Abstract
Two freshwater rivers, the Amu Darya and Syr Darya, flow into the Aral Sea, but they began to diminish in the early 1960s, and by the 1980s, the lake had nearly ceased to exist due to excessive water consumption for agriculture and the [...] Read more.
Two freshwater rivers, the Amu Darya and Syr Darya, flow into the Aral Sea, but they began to diminish in the early 1960s, and by the 1980s, the lake had nearly ceased to exist due to excessive water consumption for agriculture and the unsustainable management of water resources from rivers, which transformed the Aral Sea into a hypersaline lake. Despite this, the flora and fauna of the region began to evolve in the high-salinity seabed soil, which has received little attention in studies. In this study, we isolated approximately 1400 bacterial strains from the rhizosphere and phyllosphere of plant species of distinct families. Bacterial isolates were examined for antifungal activities against a range of pathogenic fungi such as Rhizoctonia gossypii, Trichothecium ovalisporum, Fusarium annulatum, F. oxysporum, F. culmorum, F. brachygibbosum, F. tricinctum, F. verticillioides, Alternaria alternata, A. terreus, Aspergillus niger, and As. flavus. Eighty-eight bacterial isolates exhibited varying antagonistic ability against pathogenic fungi. Furthermore, DNA barcoding of isolates using the 16S rRNA gene indicated that most antagonistic bacteria belonged to the Bacillus and Pseudomonas genera. The study also explored the activity of hydrolytic and cell-wall-degrading enzymes produced by antagonistic bacteria. The findings revealed that antagonistic bacteria can be utilized to widely protect seabed plants and plants growing in saline areas against pathogenic fungi, as well as agricultural crops. Full article
Show Figures

Figure 1

13 pages, 1949 KB  
Communication
Identification and Pathogenicity of Fusarium Species Associated with Onion Basal Rot in the Moscow Region of Russian Federation
by Svetlana Vetrova, Ksenia Alyokhina, Irina Engalycheva, Elena Kozar, Kseniya Mukhina, Maria Sletova, Leonid Krivenkov, Tatyana Tikhonova, Alina Kameneva, Svetlana Frolova, Vera Chizhik and Viktor Martynov
J. Fungi 2024, 10(5), 331; https://doi.org/10.3390/jof10050331 - 4 May 2024
Cited by 6 | Viewed by 2356
Abstract
Fusarium basal rot of onions causes large losses during storage of commercial production of onion bulbs, which in turn adversely affects the food market situation in the off-season period. There are no data on the composition of Fusarium spp., which causes onion basal [...] Read more.
Fusarium basal rot of onions causes large losses during storage of commercial production of onion bulbs, which in turn adversely affects the food market situation in the off-season period. There are no data on the composition of Fusarium spp., which causes onion basal rot in the Russian Federation. Therefore, our research was aimed at Fusarium spp. causing onion basal rot in the Moscow Region of the Russian Federation and studying the pathogenicity of these species for the host plant. We studied 20 isolates of Fusarium spp. collected from affected mature bulbs and seed bulbs. Species identification of the isolates was carried out using analysis of the nucleotide sequences of the three genetic loci ITS, tef1 and rpb2, as well as was based on the macro- and micromorphological characteristics of these isolates. As a result, the species F. annulatum (F. fujikuroi species complex), F. oxysporum (F. oxysporum species complex), F. acuminatum (F. tricinctum species complex) and F. solani (F. solani species complex) were identified to involve in the pathogenesis of Fusarium basal rot. We have shown for the first time that the species F. annulatum and F. acuminatum are highly aggressive and capable of causing onion basal rot. The predominant species were F. annulatum and F. oxysporum. The proportion of these species in the total number of analyzed isolates was 60% and 25%, respectively. The largest proportion (33%) of highly aggressive on mature bulbs isolates was found in the species F. annulatum. The data obtained provide practical insights for developing strategies to manage Fusarium fungi responsible for onion basal rot Moscow Region of the Russian Federation. In addition, data about species composition and aggressive isolates may be used in onion breeding for resistance to Fusarium basal rot. Full article
(This article belongs to the Special Issue Morphology, Phylogeny and Pathogenicity of Fusarium)
Show Figures

Figure 1

18 pages, 3518 KB  
Article
Endophytic Fungal Diversity in Cirsium kawakamii from Taiwan
by Yi-Jeng Chen, Hui-Juan Chen and Wen-Hsin Chung
J. Fungi 2023, 9(11), 1076; https://doi.org/10.3390/jof9111076 - 3 Nov 2023
Cited by 5 | Viewed by 2353
Abstract
The endophytic fungal diversity of Cirsium kawakamii, a herb indigenous to Taiwan, was analyzed in this study. In addition, some fungal isolates were evaluated for the risk they pose as plant pathogens. In total, 1836 endophytic fungi were isolated from C. kawakamii [...] Read more.
The endophytic fungal diversity of Cirsium kawakamii, a herb indigenous to Taiwan, was analyzed in this study. In addition, some fungal isolates were evaluated for the risk they pose as plant pathogens. In total, 1836 endophytic fungi were isolated from C. kawakamii from Hehuanjian, Puli Township, and Tatachia. They were classified into 2 phyla, 8 classes, 40 families, and 68 genera. Colletotrichum, Fusarium, Phomopsis, and Xylaria, (Ascomycota, Sordariomycetes) were the dominant genera. The genus accumulation curve (based on the bootstrap estimator) was non-asymptotic, with estimated richness significantly exceeding the richness captured by our sampling to date. Considering the collection time, the data indicated significant differences in the proportions of the C. kawakamii endophyte genus from Hehuanjan, Puli Township (across two seasons), and Tatachia. The Shannon and Gini–Simpson indices revealed variations in diversity, with C. kawakamii endophytes (Puli Township in winter) significantly reducing alpha diversity compared with other seasons and locations. Meanwhile, the Gini–Simpson index suggested that there were no significant differences in richness among the four sampling sites. The PCA results unveiled distinct community structures across different locations and seasons, explaining 46.73% of the total variation in fungal community composition significantly affected diversity and richness. In addition, a considerable number of Fusarium isolates exhibited harmful properties towards wheat, potatoes, and apples. It is postulated that these fungi belong to the Fusarium tricinctum species complex (FTSC). Full article
(This article belongs to the Special Issue Diversity and Secondary Metabolites of Endophytic Fungi)
Show Figures

Figure 1

15 pages, 3728 KB  
Article
The 2′,4′-Dichloro-chalcone Inhibits the In Vitro Growth and Pathogenicity of Fusarium tricinctum and Trichothecium roseum by Activating Cyanide-Resistant Respiration
by Fupeng Zhu, Yan Zhu, Yuanshou Zhao, Fu Chen, Wenjun Sheng, Wei Zhang, Pengqing Wang, Jiangwen Deng, Yunyu Sun, Weibing Zhang and Yongcai Li
Coatings 2023, 13(10), 1789; https://doi.org/10.3390/coatings13101789 - 18 Oct 2023
Viewed by 1749
Abstract
Chalcones are a class of flavonoids possessing antimicrobial properties and have potential for use as coatings of plant products for the control of postharvest diseases. The effects of 2′,4′-dichloro-chalcone on the in vitro growth and in vivo pathogenicity of Fusarium tricinctum and Trichothecium [...] Read more.
Chalcones are a class of flavonoids possessing antimicrobial properties and have potential for use as coatings of plant products for the control of postharvest diseases. The effects of 2′,4′-dichloro-chalcone on the in vitro growth and in vivo pathogenicity of Fusarium tricinctum and Trichothecium roseum were investigated. First, 1 µM of 2′,4′-dichloro-chalcone strongly inhibited the mycelial growth and conidial production of F. tricinctum (32.3%) and T. roseum (65.2%) in vitro. Meanwhile, the cell membrane permeability was increased by 25% and 22.5% and the accumulation of reactive oxygen species was increased by 41.7 and 65.4%, respectively, of F. tricinctum and T. roseum. This treatment also significantly inhibited the total respiration rate and activated the cyanide-resistant respiratory pathway in both pathogens. The expression level of AOX was enhanced in F. tricinctum and T. roseum by 52.76 and 39.13%, respectively. This treatment also significantly inhibited the expansion of potato dry rot from F. tricinctum (48.6%) and apple rot spot from T. roseum (36.2%). Therefore, 2′,4′-dichloro-chalcone has potential use as an alternative safety method in the control of postharvest diseases by F. tricinctum and T. roseum in agricultural practices. Full article
(This article belongs to the Special Issue Bio-Based and Bio-Inspired Polymers and Composites)
Show Figures

Figure 1

12 pages, 5290 KB  
Article
Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China
by Ting Ma, Chengde Yang, Fengfeng Cai and Richard Osei
Pathogens 2023, 12(7), 970; https://doi.org/10.3390/pathogens12070970 - 24 Jul 2023
Cited by 9 | Viewed by 4106
Abstract
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and [...] Read more.
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and QY9-1) induced symptoms of walnut branch blight that were consistent with those observed in the field after inoculation. Furthermore, some Fusarium-type conidia and spherical chlamydospores were visible indicating that they were Fusarium spp. A molecular characterization including sequence and phylogenetic analysis of the ITS, TEF-1α, βTUB, Fu, and LSU gene regions revealed that LN-1 and LN-19 belonged to F. avenaceum, LN-3 and LN-6 to F. acuminatum, LN-27 to F. sporotrichioides, and QY3-1 and QY9-1 to F. tricinctum. This is the first time that F. acuminatum-, F. sporotrichioides-, and F. tricinctum-caused walnut branch blight has been reported in China. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

26 pages, 5313 KB  
Article
Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor
by Ting He, Xiao Li, Riccardo Iacovelli, Thomas Hackl and Kristina Haslinger
J. Fungi 2023, 9(7), 704; https://doi.org/10.3390/jof9070704 - 27 Jun 2023
Cited by 11 | Viewed by 5702
Abstract
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European [...] Read more.
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

17 pages, 3269 KB  
Article
The Fungicidal Effect of Essential Oils of Fennel and Hops against Fusarium Disease of Pea
by Sylwia Barbara Okorska, Joanna Agnieszka Dąbrowska, Katarzyna Głowacka, Agnieszka Pszczółkowska, Krzysztof Józef Jankowski, Jan Paweł Jastrzębski, Tomasz Oszako and Adam Okorski
Appl. Sci. 2023, 13(10), 6282; https://doi.org/10.3390/app13106282 - 21 May 2023
Cited by 9 | Viewed by 3518
Abstract
Modern integrated farming systems encourage the search for alternative (non-chemical), highly effective methods of plant protection. In this study, the fungistatic effect of fennel essential oil (FEO) and hop essential oil (HEO) on fungal growth and their ability to treat Fusarium wilt was [...] Read more.
Modern integrated farming systems encourage the search for alternative (non-chemical), highly effective methods of plant protection. In this study, the fungistatic effect of fennel essential oil (FEO) and hop essential oil (HEO) on fungal growth and their ability to treat Fusarium wilt was investigated. The study was conducted in vitro and in pot experiments. The severity of infection was assessed by disease index (DI), presence of Fusarium culmorum gDNA (qPCR) and anatomical analyses of infected plant tissue using an optical (OM) and scanning electron microscope (SEM). Laboratory analyses showed that FEO inhibits mycelial growth of Fusarium fungi (F. avenaceum, F. culmorum, F. equiseti, F. oxysporum, F. poae, F. solani, F. sporotrichioides, F. tricinctum), Botrytis cinerea and Cylindrocarpon destructans more effectively than HEO. FEO at a concentration of 2000 ppm completely inhibited the growth of F. culmorum, F. poae and B. cinerea. Both essential oils reduced the severity of Fusarium wilt caused by F. culmorum in pea plants (DI, OM, SEM). The qPCR shows that both essential oils are also able to reduce the synthesis of trichothecenes in the tissues of infected pea plants. The results of the study suggest that FEO and HEO represent a broad spectrum bio-fungicidal agent that can be applied directly to plants at a concentration of 500 ppm, greatly reducing the level of infection. Full article
(This article belongs to the Special Issue New Insights into Biocontrol to Improve Food Quality and Safety)
Show Figures

Figure 1

21 pages, 3829 KB  
Article
Antifungal Activity and Effect of Plant-Associated Bacteria on Phenolic Synthesis of Quercus robur L.
by Svitlana Bilous, Artur Likhanov, Vira Boroday, Yurii Marchuk, Liubov Zelena, Oleksandr Subin and Andrii Bilous
Plants 2023, 12(6), 1352; https://doi.org/10.3390/plants12061352 - 17 Mar 2023
Cited by 11 | Viewed by 4236
Abstract
Europe’s forests, particularly in Ukraine, are highly vulnerable to climate change. The maintenance and improvement of forest health are high-priority issues, and various stakeholders have shown an interest in understanding and utilizing ecological interactions between trees and their associated microorganisms. Endophyte microbes can [...] Read more.
Europe’s forests, particularly in Ukraine, are highly vulnerable to climate change. The maintenance and improvement of forest health are high-priority issues, and various stakeholders have shown an interest in understanding and utilizing ecological interactions between trees and their associated microorganisms. Endophyte microbes can influence the health of trees either by directly interacting with the damaging agents or modulating host responses to infection. In the framework of this work, ten morphotypes of endophytic bacteria from the tissues of unripe acorns of Quercus robur L. were isolated. Based on the results of the sequenced 16S rRNA genes, four species of endophytic bacteria were identified: Bacillus amyloliquefaciens, Bacillus subtilis, Delftia acidovorans, and Lelliottia amnigena. Determining the activity of pectolytic enzymes showed that the isolates B. subtilis and B. amyloliquefaciens could not cause maceration of plant tissues. Screening for these isolates revealed their fungistatic effect against phytopathogenic micromycetes, namely Fusarium tricinctum, Botrytis cinerea, and Sclerotinia sclerotiorum. Inoculation of B. subtilis, B. amyloliquefaciens, and their complex in oak leaves, in contrast to phytopathogenic bacteria, contributed to the complete restoration of the epidermis at the sites of damage. The phytopathogenic bacteria Pectobacterium and Pseudomonas caused a 2.0 and 2.2 times increase in polyphenol concentration in the plants, respectively, while the ratio of antioxidant activity to total phenolic content decreased. Inoculation of Bacillus amyloliquefaciens and Bacillus subtilis isolates into oak leaf tissue were accompanied by a decrease in the total pool of phenolic compounds. The ratio of antioxidant activity to total phenolic content increased. This indicates a qualitative improvement in the overall balance of the oak leaf antioxidant system induced by potential PGPB. Thus, endophytic bacteria of the genus Bacillus isolated from the internal tissues of unripe oak acorns have the ability of growth biocontrol and spread of phytopathogens, indicating their promise for use as biopesticides. Full article
(This article belongs to the Special Issue Plant Growth Promoting Bacteria)
Show Figures

Figure 1

13 pages, 1828 KB  
Article
Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China
by Le Wang, Na Wang, Jialiang Yu, Jie Wu, Huan Liu, Kejian Lin and Yuanyuan Zhang
Agronomy 2023, 13(2), 456; https://doi.org/10.3390/agronomy13020456 - 3 Feb 2023
Cited by 16 | Viewed by 3708
Abstract
Alfalfa Fusarium Root Rot (AFRR) is a serious soil-borne disease with a complex pathogenicity. Diseased samples suspected of AFRR were collected from Hohhot, Ordos, Hulunbeier, Chifeng, and Bayannur in Inner Mongolia, China, leading to 317 isolates. The isolates were identified as Fusarium acuminatum [...] Read more.
Alfalfa Fusarium Root Rot (AFRR) is a serious soil-borne disease with a complex pathogenicity. Diseased samples suspected of AFRR were collected from Hohhot, Ordos, Hulunbeier, Chifeng, and Bayannur in Inner Mongolia, China, leading to 317 isolates. The isolates were identified as Fusarium acuminatum, F. solani, F. equiseti, F. incarnatum, F. oxysporum, F. avenaceum, F. verticillioides, F. proliferatum, F. falciforme, F. tricinctum, F. virguliforme, and F. redolens, and the results of pathogenicity testing showed that 12 Fusarium species could cause alfalfa root rot. Among these, F. verticillioides, F. falciforme, and F. virguliforme have not previously been reported to cause AFRR in China. Although the population structure of the pathogens differed in different regions, the dominant pathogenic species was F. acuminatum. Fungicide toxicity tests showed that seven fungicides inhibited F. acuminatum, of which fludioxonil, kresoxim-methyl, and triadimefon were found to be strongly toxic towards F. acuminatum with EC50 values of 0.09, 2.28, and 16.37 μg/mL, respectively, suggesting that these could be used as alternative fungicides for the control of AFRR. The results of this study can provide a theoretical basis for exploring the occurrence and epidemiology of alfalfa root rot and strategies for its control. Full article
(This article belongs to the Special Issue Epidemiology and Control of Fungal Diseases of Crop Plants)
Show Figures

Figure 1

Back to TopTop