Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = G6PD-deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 456 KB  
Case Report
Hereditary Spherocytosis: Review of Presentation at Birth
by Nadine-Stella Achenjang, Elizabeth Jadczak, Rita M. Ryan and Mary L. Nock
Children 2025, 12(9), 1207; https://doi.org/10.3390/children12091207 - 10 Sep 2025
Viewed by 815
Abstract
Background/Objectives: We wished to raise awareness of Hereditary Spherocytosis (HS) as a potential cause of early and significant hemolytic newborn jaundice. Methods: We utilized three recent cases from our experience to discuss hyperbilirubinemia etiologies to be considered when a baby has [...] Read more.
Background/Objectives: We wished to raise awareness of Hereditary Spherocytosis (HS) as a potential cause of early and significant hemolytic newborn jaundice. Methods: We utilized three recent cases from our experience to discuss hyperbilirubinemia etiologies to be considered when a baby has hemolytic hyperbilirubinemia, including HS, and presented a review of the literature about this disorder including presentation and evaluation in the neonate. Results: We found that ABO hemolytic disease of the newborn (HDN) is often considered as the etiology for presumed hemolytic hyperbilirubinemia even when the direct antiglobulin test (DAT) is negative. When there is a mother-baby ABO mismatch and baby’sDAT is negative, another etiology should be sought. HS should be considered in these cases as the prevalence of HS is as frequent as 1 in 2000 in certain populations, it is the third most common hemolytic disorder after ABO isoimmunization and G6PD deficiency, and it is the most common cause of non-immune hemolytic hyperbilirubinemia in neonates with kernicterus. The indices to look for in the complete blood count that are suggestive for HS are MCHC > 36.5–37 g/dL, an MCHC:MCV ratio (HS Index) > 0.36, and increased RDW. The lack of spherocytes on the newborn peripheral blood smear, family history, initial anemia, and reticulocytosis do not eliminate the diagnosis of HS. Conclusions: HS is common and should be included in the differential diagnosis for hemolytic hyperbilirubinemia. Red blood cell indices can suggest the diagnosis of HS, and eosin 5’ maleimide (EMA) testing can be used to make the diagnosis. If DAT-negative ABO HDN is the leading diagnosis for hyperbilirbinemia, a different etiology should urgently be sought. Full article
(This article belongs to the Special Issue Genetics and Precision Medicine with Hematologic Diseases in Children)
Show Figures

Figure 1

17 pages, 1545 KB  
Article
Portable Point-of-Care Device for Dual Detection of Glucose-6-Phosphate Dehydrogenase Deficiency and Hemoglobin in Low-Resource Settings
by Rehab Osman Taha, Napaporn Youngvises, Runtikan Pochairach, Papichaya Phompradit and Kesara Na-Bangchang
Biosensors 2025, 15(9), 577; https://doi.org/10.3390/bios15090577 - 3 Sep 2025
Viewed by 818
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymopathy with significant clinical implications, particularly in malaria-endemic regions and in the management of neonatal hyperbilirubinemia. Timely and accurate detection of G6PD deficiency is critical to prevent life-threatening hemolytic events following oxidative drug administration. This study [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymopathy with significant clinical implications, particularly in malaria-endemic regions and in the management of neonatal hyperbilirubinemia. Timely and accurate detection of G6PD deficiency is critical to prevent life-threatening hemolytic events following oxidative drug administration. This study evaluated the MyG6PD device, a quantitative point-of-care (PoC) tool, for the assessment of hemoglobin concentration and G6PD enzyme activity. Analytical performance was benchmarked against laboratory spectrophotometry and the STANDARD G6PD Analyzer™ (SD Biosensor; Suwon-si, Republic of Korea). MyG6PD demonstrated excellent linearity (R2 ≥ 0.99), accuracy (bias < ±15%), and precision (CV < 15%) across normal, intermediate, and deficient activity ranges, including heterozygous females with intermediate phenotypes. The device’s compact, battery-operated design, rapid turnaround, and minimal training requirements support its use in decentralized and resource-limited settings. Furthermore, cost-effective consumables and robust detection of intermediate activity highlight its potential for large-scale deployment. Overall, MyG6PD provides a reliable, accessible, and clinically actionable solution for urgent G6PD deficiency screening, enabling safer administration of oxidative therapies and improving patient outcomes in high-risk populations. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

28 pages, 5850 KB  
Article
Integrated Approach for Biochemical and Functional Characterization of Six Clinical Variants of Glucose-6-Phosphate Dehydrogenase
by Beatriz Hernández-Ochoa, Mónica Guadalupe Gualos-González, Jhuremy Alexandra Moreno-Hernández, Laura Morales-Luna, Montserrat Vázquez-Bautista, Luis Miguel Canseco-Ávila, Verónica Pérez de la Cruz, Roberto Arreguin-Espinosa, Elizabeth Hernández-Urzua, Sergio Enríquez-Flores, Ignacio De la Mora-De la Mora, Noemí Cárdenas-Rodríguez, Cindy Bandala, Lucia De Franceschi, Abraham Vidal-Limon and Saúl Gómez-Manzo
Int. J. Mol. Sci. 2025, 26(17), 8464; https://doi.org/10.3390/ijms26178464 - 30 Aug 2025
Cited by 1 | Viewed by 848
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a widespread enzymopathy affecting approximately 500 million individuals that represents a significant global health issue. Among the more than 230 identified mutations in the G6PD gene, six class A variants—G6PD Utrecht (Pro409Ser), G6PD Suwalki (Pro409Arg), G6PD Merlo (Pro409Gln), [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a widespread enzymopathy affecting approximately 500 million individuals that represents a significant global health issue. Among the more than 230 identified mutations in the G6PD gene, six class A variants—G6PD Utrecht (Pro409Ser), G6PD Suwalki (Pro409Arg), G6PD Merlo (Pro409Gln), G6PD Kawasaki (Gly410Ala), G6PD Shinagawa (Gly410Asp), and G6PD Riverside (Gly410Cys)—are located in the beta-loop near the NADP+ binding site. These mutations are of particular interest due to their association with severe hematologic phenotypes, including chronic hemolytic anemia, as well as their proposed role in the allosteric regulation of G6PD multimerization. This study presents a comprehensive biochemical and functional characterization of these clinically relevant G6PD variants. The variant enzymes were cloned, expressed, and purified for characterization. Kinetic parameters and thermal stability assays, complemented by molecular dynamics simulations (MDS), were employed to elucidate the structural impacts of the mutations. Our results demonstrate that these mutations significantly impair protein function, characterized by reduced affinity for glucose-6-phosphate (G6P) and NADP+, as well as altered thermal stability compared with wild-type G6PD. MDS revealed that point mutations in the βN- and βM-sheets in the NADP+s region propagate subtle conformational changes, ultimately affecting the NADP+c region and the G6P binding cavity. Furthermore, secondary structure element analyses of the simulation data showed that Pro409 and Gly410 point mutations propagate several changes around residues 195–210 (G6P binding site) and 380–400 (NADP+s), explaining their effect on overall catalytic performance. These findings enhance our understanding of the molecular mechanisms underlying G6PD deficiency and its clinical implications, providing a foundation for future therapeutic strategies aimed at mitigating the effects of these variants. Full article
(This article belongs to the Special Issue The Application of Machine Learning to Molecular Dynamics Simulations)
Show Figures

Figure 1

10 pages, 1172 KB  
Article
Identification of a Pathogenic Mutation for Glycogen Storage Disease Type II (Pompe Disease) in Japanese Quails (Coturnix japonica)
by Abdullah Al Faruq, Takane Matsui, Shinichiro Maki, Nanami Arakawa, Kenichi Watanabe, Yoshiyasu Kobayashi, Tofazzal Md Rakib, Md Shafiqul Islam, Akira Yabuki and Osamu Yamato
Genes 2025, 16(8), 975; https://doi.org/10.3390/genes16080975 - 19 Aug 2025
Viewed by 844
Abstract
Background/Objectives: Pompe disease (PD) is a rare autosomal recessive disorder caused by a deficiency of the lysosomal acid α-1,4-glucosidase (GAA) encoded by the GAA gene, leading to muscular dysfunctions due to pathological accumulation of glycogen in skeletal and cardiac muscles. PD has [...] Read more.
Background/Objectives: Pompe disease (PD) is a rare autosomal recessive disorder caused by a deficiency of the lysosomal acid α-1,4-glucosidase (GAA) encoded by the GAA gene, leading to muscular dysfunctions due to pathological accumulation of glycogen in skeletal and cardiac muscles. PD has been reported in several animals and Japanese quails (JQ; Coturnix japonica), but a causative mutation has yet to be found in JQs with PD. Here, we aimed to identify a pathogenic mutation in JQs associated with PD. Methods: Paraffin-embedded skeletal muscle blocks from four JQs stored since the 1970s were used in this study. After confirming the histopathological phenotypes of PD, Sanger sequencing was performed to identify a pathological mutation in the GAA I gene of JQs. A genotyping survey was conducted using a real-time polymerase chain reaction assay targeting a candidate mutation using DNA samples extracted from 70 new-hatched JQs and 10 eggs from commercial farms. Results: Microscopic analysis confirmed the presence of the PD phenotype in three affected JQs based on abnormal histopathological changes and accumulated glycogen in the affected muscles, while one JQ was unaffected and served as a control. Sanger sequencing revealed that the three affected JQs were homozygous for the deletion of guanine at position 1096 in the open reading frame (c.1096delG). A genotyping survey of 70 JQs and 10 eggs from commercial farms showed that none carried this deletion mutation. Conclusions: This study identified c.1096delG as the pathogenic mutation for PD in JQs. This mutation induces a frameshift and substitution of amino acids at position 366 (alanine to histidine), resulting in premature termination at the 23rd codon (p.A366Hfs*23). This suggests that this mutation causes the deficient activity of GAA in JQs with PD. The identification of the c.1096delG mutation enabled the systematic maintenance of the flock colony in the PD model. Furthermore, this PD model can be used to clarify unknown aspects of PD pathogenesis and develop therapeutic strategies. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

37 pages, 2406 KB  
Review
Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights
by Humam Emad Rajha, Ahmed Hassanein, Rowan Mesilhy, Zainab Nurulhaque, Nebras Elghoul, Patrick G. Burgon, Rafif Mahmood Al Saady and Shona Pedersen
Int. J. Mol. Sci. 2025, 26(16), 7908; https://doi.org/10.3390/ijms26167908 - 16 Aug 2025
Viewed by 1784
Abstract
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current [...] Read more.
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current evidence on their structural and functional contributions to neuroprotection, highlighting their dual roles as biomarkers and therapeutic targets. ApoA-I, the most extensively studied, exhibits anti-inflammatory, antioxidant, and amyloid-clearing properties, with reduced levels associated with AD progression and cognitive decline. ApoA-II modulates HDL metabolism and stroke risk, while ApoA-IV influences neuroinflammation and amyloid processing. ApoA-V, although less explored, is implicated in stroke susceptibility through its regulation of triglycerides. Genetic polymorphisms (e.g., APOA1 rs670, APOA5 rs662799) further complicate disease risk, showing population-specific associations with stroke and neurodegeneration. Therapeutic strategies targeting ApoA proteins, including reconstituted HDL, mimetic peptides, and gene-based approaches, show promise in preclinical models but face translational challenges in human trials. Clinical trials, such as those with CSL112, highlight the need for neuro-specific optimization. Further research should prioritize human-relevant models, advanced neuroimaging techniques, and functional assays to elucidate ApoA mechanisms inside the central nervous system. The integration of genetic, lipidomic, and clinical data offers potential for enhancing precision medicine in neurological illnesses by facilitating the generation of ApoA-targeted treatments and bridging current deficiencies in disease comprehension and therapy. Full article
Show Figures

Figure 1

12 pages, 886 KB  
Review
Exploring the Association Between Glucose-6-Phosphate Dehydrogenase Deficiency and Autism Spectrum Disorder: A Narrative Review
by Maitha Abdulla Alshamsi, Maitha Tareq Al Teneiji, Subhranshu Sekhar Kar and Rajani Dube
Children 2025, 12(8), 1054; https://doi.org/10.3390/children12081054 - 11 Aug 2025
Viewed by 1102
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease of multifactorial etiologies, manifesting as persistent challenges in social interactions, restrictive interests, and repetitive behaviors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting red blood cell function. Although G6PD enzyme deficiency [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease of multifactorial etiologies, manifesting as persistent challenges in social interactions, restrictive interests, and repetitive behaviors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting red blood cell function. Although G6PD enzyme deficiency is known for its role in hemolytic anemia, emerging studies have suggested a potential association between G6PD deficiency and neurodegenerative and neurodevelopmental disorders, including autism. This narrative review explores the possible connection between G6PD deficiency and autism by analyzing relevant literature from the PubMed and Scopus databases. Current evidence points to plausible biological links, particularly oxidative stress and folate metabolism, warranting further investigation into G6PD deficiency as a potential risk modifier in ASD. Moreover, further research is necessary to elucidate the nature of this relationship and its implications for clinical practice. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

8 pages, 3739 KB  
Communication
Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants
by Abdullah Al Faruq, Tofazzal Md Rakib, Md Shafiqul Islam, Akira Yabuki, Shahnaj Pervin, Shinichiro Maki, Shigeki Tanaka, Nanami Arakawa and Osamu Yamato
Genes 2025, 16(8), 938; https://doi.org/10.3390/genes16080938 - 7 Aug 2025
Viewed by 773
Abstract
Background/Objectives: Glycogen storage disease type II, also known as Pompe disease (PD), is a rare autosomal recessive genetic disorder triggered by a deficiency in lysosomal acid α-glucosidase (GAA). Recently, we discovered two deleterious missense variants of the GAA gene, c.1799G>A (p.Arg600His) (a pathogenic [...] Read more.
Background/Objectives: Glycogen storage disease type II, also known as Pompe disease (PD), is a rare autosomal recessive genetic disorder triggered by a deficiency in lysosomal acid α-glucosidase (GAA). Recently, we discovered two deleterious missense variants of the GAA gene, c.1799G>A (p.Arg600His) (a pathogenic mutation) and c.55G>A (p.Val19Met), in a domestic short-haired cat with PD. This study aimed to design genotyping assays for these two variants and ascertain their allele frequencies in Japanese cat populations. Methods: We developed fluorescent probe-based real-time polymerase chain reaction assays to genotype the c.1799G>A and c.55G>A variants. A total of 738 cats, comprising 99 purebred cats from 20 breeds and 540 mixed-breed cats, were screened using these assays. Results: Genotyping assays clearly differentiated all known genotypes of the two variants. None of the 738 cats tested carried the c.1799G>A variant. However, we identified cats with c.55G/A and c.55A/A genotypes in the purebred (A allele frequency: 0.081) and mixed-breed cats (0.473). A significant difference (p < 0.001) was observed in the A allele frequency between the two groups. Conclusions: The c.1799G>A mutation appears rare in cat populations, suggesting it may be confined to specific pedigree Japanese mixed-breed cats. The c.55G>A variant was detected in purebred and mixed-breed cats, suggesting that it may not be directly linked to feline PD. However, additional studies are required to elucidate the precise relationship between this variant and cardiac function. Genotyping assays will serve as valuable tools for diagnosing and genotyping feline PD. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

22 pages, 5809 KB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Cited by 1 | Viewed by 913
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

17 pages, 5703 KB  
Review
IFN γ and the IFN γ Signaling Pathways in Merkel Cell Carcinoma
by Lina Song, Jinye Guan, Qunmei Zhou, Wenshang Liu, Jürgen C. Becker and Dan Deng
Cancers 2025, 17(15), 2547; https://doi.org/10.3390/cancers17152547 - 1 Aug 2025
Viewed by 947
Abstract
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, [...] Read more.
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, the role of innate immune signaling, particularly interferon-γ (IFN γ) and its downstream pathways, remains underexplored. This review summarizes recent findings on IFN-γ in MCC, highlighting its dual role in promoting both antitumor immunity and immune evasion. IFN-γ enhances cytotoxic T cell responses, upregulates MHC class I/II expression, and induces tumor cell apoptosis. Transcriptomic studies have shown that IFN-γ treatment upregulates immune-regulatory genes including PD-L1, HLA-A/B/C, and IDO1 by over threefold; it also activates APOBEC3B and 3G, contributing to antiviral defense and tumor editing. Clinically, immune checkpoint inhibitors (ICIs) such as pembrolizumab and avelumab yield objective response rates of 30–56% and two-year overall survival rates exceeding 60% in advanced MCC. However, approximately 50% of patients do not respond, in part due to IFN-γ signaling deficiencies. This review further discusses IFN-γ’s crosstalk with the STAT1/3/5 pathways and emerging combination strategies aimed at restoring immune sensitivity. Understanding these mechanisms may inform personalized immunotherapeutic approaches and guide the development of IFN-γ–based interventions in MCC. Full article
(This article belongs to the Special Issue Histopathology and Pathogenesis of Skin Cancer)
Show Figures

Figure 1

21 pages, 5544 KB  
Article
Increased Exercise Tolerance in G6PD African Variant Mice Driven by Metabolic Adaptations and Erythrophagocytosis
by Francesca I. Cendali, Abby L. Grier, Christina Lisk, Monika Dzieciatkowska, Zachary Haiman, Julie A. Reisz, Julie Harral, Daniel Stephenson, Ariel M. Hay, Eric P. Wartchow, Paul W. Buehler, Kirk C. Hansen, Travis Nemkov, James C. Zimring, David C. Irwin and Angelo D’Alessandro
Antioxidants 2025, 14(8), 927; https://doi.org/10.3390/antiox14080927 - 29 Jul 2025
Viewed by 954
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymatic disorder, affects over 500 million people worldwide and is often linked to exercise intolerance due to oxidative stress, but its true impact on physical performance remains unclear. This study aimed to evaluate the physiological and metabolic effects of G6PD deficiency on endurance capacity. Using humanized mice carrying the African G6PD variant [V68M; N126D] (hG6PDA−), we show that despite reduced pentose phosphate pathway activity, these mice exhibit a 10.8% increase in treadmill critical speed (CS)—suggesting enhanced endurance capacity. Multi-omics profiling across red blood cells, plasma, skeletal muscle, spleen, kidney, and liver reveals metabolic adaptations, including elevated glycolysis, fatty acid oxidation, and increased mitochondrial activity, alongside heightened oxidative phosphorylation in muscle and accelerated red blood cell turnover in the spleen and liver. These findings indicate that systemic metabolic reprogramming may offset antioxidant deficiencies, potentially conferring a performance advantage. Given that G6PD deficiency affects up to 13% of African Americans and is associated with cardiovascular health disparities, our results challenge conventional exercise restrictions and highlight the need for personalized exercise guidelines for affected individuals. Full article
(This article belongs to the Special Issue Blood Cells and Redox Homeostasis in Health and Disease, 2nd Edition)
Show Figures

Figure 1

20 pages, 3742 KB  
Review
Predictive Biomarkers for Immunotherapy in Endometrial Carcinoma
by Cristina Pizzimenti, Vincenzo Fiorentino, Ludovica Pepe, Mariausilia Franchina, Chiara Ruggeri, Alfredo Ercoli, Giuliana Ciappina, Massimiliano Berretta, Giovanni Tuccari and Antonio Ieni
Cancers 2025, 17(15), 2420; https://doi.org/10.3390/cancers17152420 - 22 Jul 2025
Cited by 1 | Viewed by 1793
Abstract
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which [...] Read more.
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which provides crucial prognostic information and predicts benefit from immunotherapy. This review summarizes the landscape of predictive biomarkers for immune checkpoint inhibitor (ICI) therapy in EC, emphasizing a new therapeutic scenario for advanced and recurrent EC. Mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H), leading to high tumor mutational burden (TMB) and increased neoantigen production, is the most established predictor, resulting in FDA approvals for pembrolizumab and dostarlimab in this subgroup. POLE mutations also confer hypermutation and high immunogenicity, predicting a favorable ICI response. Other biomarkers, including PD-L1 expression and TMB, show variable correlation with response and require further standardization. The tumor immune microenvironment, including tumor-infiltrating lymphocytes (TILs), also influences treatment outcomes. Clinical trials have demonstrated significant survival benefits for ICIs combined with chemotherapy (e.g., dostarlimab/pembrolizumab + carboplatin/paclitaxel) in first-line settings, especially for dMMR/MSI-H EC, and for ICI combinations with targeted agents (e.g., lenvatinib + pembrolizumab) in previously treated patients. Integrating molecular classification and validated biomarkers is essential for optimizing patient selection and developing personalized immunotherapy strategies for EC. Full article
Show Figures

Figure 1

23 pages, 1576 KB  
Review
Immune Deficiency/Dysregulation-Associated EBV-Positive Classic Hodgkin Lymphoma
by Mohamed Nazem Alibrahim, Annunziata Gloghini and Antonino Carbone
Cancers 2025, 17(9), 1433; https://doi.org/10.3390/cancers17091433 - 25 Apr 2025
Cited by 3 | Viewed by 5037
Abstract
Classic Hodgkin lymphoma (cHL) in patients with immune deficiency/dysregulation represents a critical unmet need in hematology, demanding the appropriate revision of classification and therapeutic paradigms. Epstein–Barr virus (EBV) is a pivotal driver of lymphomagenesis in this high-risk subset, where viral oncoproteins (e.g., LMP1/2A) [...] Read more.
Classic Hodgkin lymphoma (cHL) in patients with immune deficiency/dysregulation represents a critical unmet need in hematology, demanding the appropriate revision of classification and therapeutic paradigms. Epstein–Barr virus (EBV) is a pivotal driver of lymphomagenesis in this high-risk subset, where viral oncoproteins (e.g., LMP1/2A) exploit immune vulnerabilities to activate NF-κB, rewire tumor microenvironments (TME), and evade immune surveillance. EBV-positive cHL, prevalent in immunosuppressed populations, exhibits distinct molecular hallmarks, including reduced somatic mutations, unique HLA associations, and profound PD-L1-mediated immune suppression, that diverge from EBV-negative cases reliant on genetic aberrations. Despite advances in combined antiretroviral therapy, HIV co-infection exacerbates pathogenesis, M2 macrophage dominance, and T-cell exhaustion, while links to other viruses remain ambiguous. Current therapies fail to adequately target these viral and immune complexities, leaving patients with poorer outcomes. This review synthesizes insights into EBV’s etiological role, immune contexture disparities, and the genetic–environmental interplay shaping cHL heterogeneity. The WHO classification highlights the need to reclassify EBV-associated cHL as a distinct subset, integrating viral status and immune biomarkers into diagnostic frameworks. Urgent priorities include global epidemiological studies to clarify causal mechanisms, development of virus-targeted therapies (e.g., EBV-specific T-cell strategies, PD-1/CTLA-4 blockade), and personalized regimens for immune-dysregulated cohorts. Full article
(This article belongs to the Special Issue Oncogenesis of Lymphoma)
Show Figures

Figure 1

13 pages, 2012 KB  
Article
The Usefulness of Testosterone in Saliva Tests to Detect Testosterone Deficiency in Men with Advanced Chronic Kidney Disease: A Single-Center Study
by Ksymena Leśniak, Arkadiusz Lubas and Stanisław Niemczyk
J. Clin. Med. 2025, 14(8), 2818; https://doi.org/10.3390/jcm14082818 - 19 Apr 2025
Viewed by 2519
Abstract
Background: Hypogonadism frequently occurs among men with chronic kidney disease (CKD) and is a highly unfavorable prognostic factor. Therefore, a simple and common screening for testosterone deficiency may be important. The measurement of testosterone in saliva appears to be an attractive alternative to [...] Read more.
Background: Hypogonadism frequently occurs among men with chronic kidney disease (CKD) and is a highly unfavorable prognostic factor. Therefore, a simple and common screening for testosterone deficiency may be important. The measurement of testosterone in saliva appears to be an attractive alternative to serum testosterone. This study aimed to assess the usefulness of determining free testosterone concentration in saliva to detect testosterone deficiency in men with advanced CKD, including those on dialysis. Methods: A total of 77 adult, male patients (aged 41–89 years old)—30 with CKD stage G3-G4, 30 on hemodialysis (HD), and 17 on peritoneal dialysis (PD)—were evaluated. The concentration of free testosterone was determined in saliva (SalFT), while the concentration of total testosterone (TT) was determined in blood serum. Serum-free testosterone levels were calculated (cFT). Results: SalFT did not differ from cFT in the CKD (p = 0.547) and PD groups (p = 0.409). In the HD group, SalFT was higher than cFT (p = 0.009). SalFT was positively correlated with cFT (r = 0.435 in the CKD and r = 0.479 in the HD) and TT (r = 0.451 in CKD), but only in the group of patients with SalFT levels below 140 pg/mL and 120 pg/mL, respectively. A cut-off value of SalFT ≤ 60.6 pg/mL showed 73.9% sensitivity and 77.8% specificity for testosterone deficiency recognition. Conclusions: Our study supports the value of SalFT measurement as a non-invasive approach in the diagnosis of testosterone deficiency in men with advanced CKD, as well as patients on hemodialysis. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

8 pages, 822 KB  
Case Report
Hemolytic Anemia Due to Gamma-Glutamylcysteine Synthetase Deficiency: A Rare Novel Case in an Arab-Muslim Israeli Child
by Motti Haimi and Jamal Mahamid
Hematol. Rep. 2025, 17(2), 20; https://doi.org/10.3390/hematolrep17020020 - 15 Apr 2025
Viewed by 1239
Abstract
Background: Gamma-glutamylcysteine synthetase catalyzes the first and rate-limiting step in the synthesis of glutathione. Gamma-glutamylcysteine synthetase deficiency is a very rare condition that has so far been detected so far in nine patients from seven families worldwide. The inheritance of this disorder is [...] Read more.
Background: Gamma-glutamylcysteine synthetase catalyzes the first and rate-limiting step in the synthesis of glutathione. Gamma-glutamylcysteine synthetase deficiency is a very rare condition that has so far been detected so far in nine patients from seven families worldwide. The inheritance of this disorder is autosomal recessive. Methods: We report a case of 4.11-year-old boy, of Arab-Muslim origin, living in an Arab town in Israel who presented at the age of 2 days with severe anemia, reticulocytosis, and leukocytosis. Investigation for common causes of hemolytic anemia was negative (peripheral blood smear was normal, and he had a negative Coombs test, normal G6PD, and normal flow cytometry spherocytosis). The anemia worsened during the following days (hemoglobin (Hb): 7.2 g/dL) and he needed several blood transfusions. NGS (next-generation sequencing) gene panel analysis was performed. Results: In an NGS gene panel analysis for hereditary hemolytic anemias, we found a homozygotic change in the GCLC gene—G53.385.643c379C > T(homo)pArg127Cys—which confirms the diagnosis of gamma-glutamylcysteine synthetase deficiency. An additional rare change was found in this case in the GCLC gene, with unknown clinical significance: g.53373917, c 828 + 3A > G. Except for chronic anemia (Hb levels around 8 g/dL), the child has normal physical and neurological development. Conclusions: This study reports a rare case of gamma-glutamylcysteine synthetase deficiency in a 4.11-year-old Arab-Muslim boy from Israel who presented with severe anemia at 2 days old, aiming to document the first such case in the Middle East and contribute to the medical literature on this extremely rare condition that has only been detected in nine patients worldwide. Genetic analysis revealed a homozygotic change in the GCLC gene, confirming the diagnosis, and while the patient experiences chronic anemia, he maintains normal physical and neurological development, adding valuable insights to the understanding of this rare genetic disorder. An additional rare change was found in this case in the GCLC gene, with unknown clinical significance: g.53373917, c 828 + 3A > G. Full article
(This article belongs to the Special Issue Anaemia in Focus: Challenges and Solutions in Haematology)
Show Figures

Figure 1

17 pages, 3642 KB  
Article
Mitochondrial HMG-CoA Synthase Deficiency in Vietnamese Patients
by Khanh Ngoc Nguyen, Tran Minh Dien, Thi Bich Ngoc Can, Bui Phuong Thao, Tien Son Do, Thi Kim Giang Dang, Ngoc Lan Nguyen, Van Khanh Tran, Thuy Thu Nguyen, Tran Thi Quynh Trang, Le Thi Phuong, Phan Long Nguyen, Thinh Huy Tran, Nguyen Huu Tu and Chi Dung Vu
Int. J. Mol. Sci. 2025, 26(4), 1644; https://doi.org/10.3390/ijms26041644 - 14 Feb 2025
Cited by 1 | Viewed by 1728
Abstract
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (HMGCS2D) is a rare metabolic disorder that impairs the body’s ability to produce ketone bodies and regulate energy metabolism. Diagnosing HMGCS2D is challenging because patients typically remain asymptomatic unless they experience fasting or illness. Due to the absence of [...] Read more.
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (HMGCS2D) is a rare metabolic disorder that impairs the body’s ability to produce ketone bodies and regulate energy metabolism. Diagnosing HMGCS2D is challenging because patients typically remain asymptomatic unless they experience fasting or illness. Due to the absence of reliable biochemical markers, genetic testing has become the definitive method for diagnosing HMGCS2D. This study included 19 patients from 14 unrelated families diagnosed with HMGCS2D in our department between October 2018 and October 2024. The clinical presentations, biochemical findings, molecular characteristics, and management strategies were systematically summarized and analyzed. Of the 19 cases studied, 16 were symptomatic, and 3 were asymptomatic. The onset of the first acute episode occurred between 10 days and 28 months of age. Triggers for the initial crisis in the symptomatic cases included poor feeding (93.8%), vomiting (56.3%), diarrhea (25.0%), and fever (18.8%). Clinical manifestations during the first episode were lethargy/coma (81.3%), rapid breathing (68.8%), hepatomegaly (56.3%), shock (37.5%), and seizures (18.8%). The biochemical abnormalities observed included elevated plasma transaminases (100%), metabolic acidosis (75%), hypoglycemia (56.3%), and elevated plasma ammonia levels (31.3%). Additionally, low free carnitine levels were found in seven cases, elevated C2 levels were found in one case, dicarboxylic aciduria was found in two cases, and ketonuria was found in two cases. Abnormal brain MRI findings were detected in three patients. Genetic analysis revealed seven HMGCS2 gene variants across the 19 cases. Notably, a novel variant, c.407A>T (p.D136V), was identified and has not been reported in any existing databases. Two common variants, c.559+1G>A and c.1090T>A (p.F364I), were present in 11 out of 19 cases (57.9%) and 10 out of 19 cases (55.5%), respectively. The implementation of a high glucose infusion and proactive management strategies—such as preventing prolonged fasting and providing enteral carbohydrate/glucose infusion during illness—effectively reduced the rate of acute relapses following accurate diagnosis. Currently, all 19 patients are alive, with ages ranging from 5 months to 14 years, and exhibit normal physical development. To the best of our knowledge, this study represents the first reported cases of HMGCS2D in Vietnamese patients. Our findings contribute to a broader understanding of the clinical phenotype and expand the known spectrum of HMGCS2 gene variants, enhancing current knowledge of this rare metabolic disorder. Full article
(This article belongs to the Special Issue Genes and Human Diseases 2.0)
Show Figures

Figure 1

Back to TopTop