Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = H2 relaxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 17371 KB  
Article
Transcriptomic Profile of Early Antral Follicles: Predictive Somatic Gene Markers of Oocyte Maturation Outcome
by Alessia Peserico, Barbara Barboni, Chiara Camerano Spelta Rapini, Chiara Di Berardino, Giulia Capacchietti, Angelo Canciello, Fani Konstantinidou, Marisa Donato, Liborio Stuppia and Valentina Gatta
Cells 2025, 14(10), 704; https://doi.org/10.3390/cells14100704 - 12 May 2025
Viewed by 1594
Abstract
Early antral follicles (EAfs) offer oocyte potential in Assisted Reproductive Technology (ART), but most fail to mature under current in vitro maturation (IVM) protocols. This study examines transcriptomic profiles of the follicular wall (FW) compartment during IVM in ovine EAfs using a 3D [...] Read more.
Early antral follicles (EAfs) offer oocyte potential in Assisted Reproductive Technology (ART), but most fail to mature under current in vitro maturation (IVM) protocols. This study examines transcriptomic profiles of the follicular wall (FW) compartment during IVM in ovine EAfs using a 3D follicle-enclosed oocyte (FEO) culture to identify somatic gene markers predicting oocyte maturation success. Differentially expressed genes (DEGs) were identified across three comparisons: pre- vs. post-hCG in FW enclosing mature/fertilizable (1) or immature (2) oocytes, and post-hCG between FW supporting successful vs. failed maturation (3). Network analysis highlighted key modulated and HUB genes. Two DEG categories emerged: genes regulating meiosis resumption and genes defining follicular signatures linked to oocyte competence. Meiosis resumption involved ECM remodeling, hypoxia, and relaxin signaling activation, while proliferative and metabolic pathways were downregulated. MMP13 and EGFR regulated the ECM pathway, working for meiosis resumption, while TGFB1 predicted failure. Oocyte competence involves ECM activation and the suppression of stress and cell cycle pathways, with ITIH4 being conducive to central HUB tuning inflammation and angiogenesis-dependent maturation. This study reveals molecular mechanisms behind follicle maturation, identifying transcriptomic signatures for FW releasing mature/fertilizable and incompetent oocytes. It confirms known biomarkers and uncovers new regulators, offering tools to assess follicle quality, improve IVF–oocyte selection, and enhance fertility preservation. Full article
Show Figures

Figure 1

12 pages, 4708 KB  
Article
Serelaxin Protects H9c2 Cardiac Myoblasts against Hypoxia and Reoxygenation-Induced Damage through Activation of AMP Kinase/Sirtuin1: Further Insight into the Molecular Mechanisms of the Cardioprotection of This Hormone
by Virginia Zizi, Matteo Becatti, Daniele Bani and Silvia Nistri
Antioxidants 2024, 13(2), 163; https://doi.org/10.3390/antiox13020163 - 27 Jan 2024
Cited by 2 | Viewed by 2917
Abstract
Serelaxin (RLX), namely the human recombinant Relaxin-2 hormone, protects the heart from ischemia/reperfusion (I/R)-induced damage due to its anti-inflammatory, anti-apoptotic and antioxidant properties. RLX acts by binding to its specific RXFP1 receptor whereby it regulates multiple transduction pathways. In this in vitro study, [...] Read more.
Serelaxin (RLX), namely the human recombinant Relaxin-2 hormone, protects the heart from ischemia/reperfusion (I/R)-induced damage due to its anti-inflammatory, anti-apoptotic and antioxidant properties. RLX acts by binding to its specific RXFP1 receptor whereby it regulates multiple transduction pathways. In this in vitro study, we offer the first evidence for the involvement of the AMP kinase/Sirtuin1 (AMPK/SIRT1) pathway in the protection by RLX against hypoxia/reoxygenation (H/R)-induced damage in H9c2 cells. The treatment of the H/R-exposed cells with RLX (17 nmol L−1) enhanced SIRT1 expression and activity. The inhibition of SIRT1 signaling with EX527 (10 µmol L−1) reduced the beneficial effect of the hormone on mitochondrial efficiency and cell apoptosis. Moreover, RLX upregulated the AMPK pathway, as shown by the increase in the expression of phospho-AMPK-activated protein. Finally, AMPK pathway inhibition by Compound C (10 and 20 μmol L−1) abrogated the increase in SIRT1 expression induced by RLX, thus suggesting the involvement of the AMPK pathway in this effect of RLX. These results strengthen the concept that RLX exerts its cardioprotective effects against H/R-induced injury through multiple pathways which also include AMPK/SIRT1. These new findings support the use of RLX or RLX-derived molecules as a promising therapeutic for those diseases in which I/R and oxidative stress play a pathogenic role. Full article
Show Figures

Graphical abstract

16 pages, 4444 KB  
Article
Integration of Transcriptomics and Proteomics Analysis Reveals the Molecular Mechanism of Eriocheir sinensis Gills Exposed to Heat Stress
by Chenchen Shen, Guangpeng Feng, Feng Zhao, Xiaorong Huang, Min Wang and Haihua Wang
Antioxidants 2023, 12(12), 2020; https://doi.org/10.3390/antiox12122020 - 21 Nov 2023
Cited by 11 | Viewed by 2151
Abstract
Heat stress is an increasingly concerning topic under global warming. Heat stress can induce organisms to produce excess reactive oxygen species, which will lead to cell damage and destroy the antioxidant defense of aquatic animals. Chinese mitten crab, Eriocheir sinensis, is sensitive [...] Read more.
Heat stress is an increasingly concerning topic under global warming. Heat stress can induce organisms to produce excess reactive oxygen species, which will lead to cell damage and destroy the antioxidant defense of aquatic animals. Chinese mitten crab, Eriocheir sinensis, is sensitive to the change in water temperature, and parent crabs are more vulnerable during the breeding stage. In the present study, the multi-omics responses of parent E. sinensis gills to heat stress (24 h) were determined via transcriptome and proteome. The integrative analysis revealed that heat shock protein 70 (HSP70) and glutathione s-transferase (GST) were significantly up-regulated at gene and protein levels after heat stress, indicating that HSP70 and the antioxidant system participated in the regulatory mechanism of heat stress to resist oxidative damage. Moreover, the “Relaxin signaling pathway” was also activated at gene and protein levels under 30 °C stress, which implied that relaxin may be essential and responsible for reducing the oxidative damage of gills caused by extreme heat stress. These findings provided an understanding of the regulation mechanism in E. sinensis under heat stress at gene and protein levels. The mining of key functional genes, proteins, and pathways can also provide a basis for the cultivation of new varieties resistant to oxidative stress. Full article
Show Figures

Figure 1

9 pages, 3303 KB  
Communication
Further Developments towards a Minimal Potent Derivative of Human Relaxin-2
by Thomas N. G. Handley, Praveen Praveen, Julien Tailhades, Hongkang Wu, Ross A. D. Bathgate and Mohammed Akhter Hossain
Int. J. Mol. Sci. 2023, 24(16), 12670; https://doi.org/10.3390/ijms241612670 - 11 Aug 2023
Cited by 5 | Viewed by 2925
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, [...] Read more.
Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, three-disulfide-bond-containing peptide, which is unstable in human serum and difficult to synthesize efficiently. In 2016, our group developed B7-33, a single-chain peptide derived from the B-chain of H2 relaxin. B7-33 demonstrated poor affinity and potency in HEK cells overexpressing RXFP1; however, it displayed equivalent potency to H2 relaxin in fibroblasts natively expressing RXFP1, where it also demonstrated the anti-fibrotic effects of the native hormone. B7-33 reversed organ fibrosis in numerous pre-clinical animal studies. Here, we detail our efforts towards a minimal H2 relaxin scaffold and attempts to improve scaffold activity through Aib substitution and hydrocarbon stapling to re-create the peptide helicity present in the native H2 relaxin. Full article
Show Figures

Figure 1

11 pages, 1955 KB  
Communication
A Lipidated Single-B-Chain Derivative of Relaxin Exhibits Improved In Vitro Serum Stability without Altering Activity
by Praveen Praveen, Chao Wang, Thomas N. G. Handley, Hongkang Wu, Chrishan S. Samuel, Ross A. D. Bathgate and Mohammed Akhter Hossain
Int. J. Mol. Sci. 2023, 24(7), 6616; https://doi.org/10.3390/ijms24076616 - 1 Apr 2023
Cited by 7 | Viewed by 3531
Abstract
Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin’s receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin [...] Read more.
Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin’s receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges. Our laboratory has recently developed B7-33 peptide, a single-chain agonist based on the B-chain of H2 relaxin. However, the peptide B7-33 has a short circulation time in vitro in serum (t1/2 = ~6 min). In this study, we report structure-activity relationship studies on B7-33 utilizing different fatty-acid conjugations at different positions. We have shown that by fatty-acid conjugation with an appropriate spacer length, the in vitro half-life of B7-33 can be increased from 6 min to 60 min. In the future, the lead lipidated molecule will be studied in animal models to measure its PK/PD properties, which will lead to their pre-clinical applications. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

9 pages, 1601 KB  
Article
Porcine Relaxin but Not Serelaxin Shows Residual Bioactivity after In Vitro Simulated Intestinal Digestion—Clues for the Development of New Relaxin Peptide Agonists Suitable for Oral Delivery
by Lorenzo Pacini, Annunziata D’Ercole, Anna Maria Papini, Daniele Bani, Silvia Nistri and Paolo Rovero
Int. J. Mol. Sci. 2023, 24(1), 48; https://doi.org/10.3390/ijms24010048 - 20 Dec 2022
Cited by 1 | Viewed by 2464
Abstract
Despite human recombinant H2 relaxin or serelaxin holding promise as a cardiovascular drug, its actual efficacy in chronic treatment of heart failure patients was hampered by the need to be administered by multiple daily IV injections for a long time, with obvious drawbacks [...] Read more.
Despite human recombinant H2 relaxin or serelaxin holding promise as a cardiovascular drug, its actual efficacy in chronic treatment of heart failure patients was hampered by the need to be administered by multiple daily IV injections for a long time, with obvious drawbacks in terms of patients’ compliance. This in vitro study aimed at exploring the molecular background for a possible administration of the peptide hormone relaxin by the oral route. Serelaxin and purified porcine relaxin (pRLX) were subjected to simulated intestinal fluid (SIF) enzymatic digestion in vitro to mimic the behavior of gastroprotective formulations. The digestion time course was studied by HPLC, and the relative bio-potency of the intact molecules and their proteolytic fragments was assessed by second messenger (cAMP) response in RXFP1 relaxin receptor-bearing THP-1 human monocytic cells. Both intact proteins (100 ng/mL) induced a significant cAMP rise in THP-1 cells. Conversely, SIF-treated serelaxin showed a brisk (30 s) bioactivity decay, dropping down to the levels of the unstimulated controls at 120 s, whereas SIF-treated pRLX retained significant bioactivity for up to 120 s. After that, it progressively declined to the levels of the unstimulated controls. HPLC analysis indicates that this bioactivity could be ascribed to a minor component of the pRLX sample more resistant to proteolysis. When identified and better characterized, this peptide could be exploited for the development of synthetic relaxin agonists suitable for oral formulations. Full article
Show Figures

Figure 1

10 pages, 2470 KB  
Article
Experimental Static Cold Storage of the Rat Uterus: Protective Effects of Relaxin- or Erythropoietin-Supplemented HTK-N Solutions
by Lina Jakubauskiene, Matas Jakubauskas, Gintare Razanskiene, Bettina Leber, Diana Ramasauskaite, Kestutis Strupas, Philipp Stiegler and Peter Schemmer
Biomedicines 2022, 10(11), 2730; https://doi.org/10.3390/biomedicines10112730 - 28 Oct 2022
Viewed by 1705
Abstract
Uterus transplantation (UTx) is the only treatment method for women with absolute uterine infertility. Currently, the number of grafts retrieved from deceased donors is increasing; hence, prolonged cold ischemia time is inevitable. Thus, this study was designed to assess the effect of the [...] Read more.
Uterus transplantation (UTx) is the only treatment method for women with absolute uterine infertility. Currently, the number of grafts retrieved from deceased donors is increasing; hence, prolonged cold ischemia time is inevitable. Thus, this study was designed to assess the effect of the novel relaxin (RLN)- or erythropoietin (EPO)-supplemented Custodiol-N (HTK-N) solutions in an experimental uterus static cold storage (SCS) model. A total of 15 Sprague Dawley rats were used. Uterus horns were randomly assigned into three groups (n = 10/group). SCS was performed by keeping samples at 4 °C in HTK-N solution without or with different additives: 10 IU/mL EPO or 20 nM RLN. Tissue samples were taken after 8 and 24 h of preservation. Uterine tissue histology, and biochemical and immunohistochemical markers were analyzed. No significant differences in SCS-induced tissue damage were observed between groups after 8 h of preservation. Uterine tissue histology, MDA, SOD levels and the TUNEL-positive cell number showed severe damage in HTK-N without additives after 24 h of preservation. This damage was significantly attenuated by adding RLN to the preservation solution. EPO showed no favorable effect. Our study shows that RLN as an additive to an HTK-N solution can serve as an effective uterine tissue preservative in the uterus SCS setting. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 3694 KB  
Article
Custodiol® Supplemented with Synthetic Human Relaxin Decreases Ischemia-Reperfusion Injury after Porcine Kidney Transplantation
by Augustinas Bausys, Juste Maneikyte, Bettina Leber, Jennifer Weber, Nicole Feldbacher, Kestutis Strupas, Thomas Bernd Dschietzig, Peter Schemmer and Philipp Stiegler
Int. J. Mol. Sci. 2021, 22(21), 11417; https://doi.org/10.3390/ijms222111417 - 22 Oct 2021
Cited by 5 | Viewed by 3230
Abstract
Objective. Ischemia-reperfusion injury (IRI) is inevitable after kidney transplantation (KT), impairing outcomes. Relaxin-2 (RLX) is a promising insulin-related peptide hormone that protects against renal IRI in rodents, although large animal models are needed before RLX can be tested in a human setting. Methods. [...] Read more.
Objective. Ischemia-reperfusion injury (IRI) is inevitable after kidney transplantation (KT), impairing outcomes. Relaxin-2 (RLX) is a promising insulin-related peptide hormone that protects against renal IRI in rodents, although large animal models are needed before RLX can be tested in a human setting. Methods. In this blinded, randomized, and placebo-controlled experimental study kidneys from 19 donor pigs were retrieved after perfusion with Custodiol® ± RLX (5 or 20 nmol/L) and underwent static cold storage (SCS) for 24 and 48 h, respectively. Subsequently, KT was performed after unilateral right nephrectomy. Study outcomes included markers for kidney function, oxidative stress, lipid peroxidation, and endothelial cell damage. PCR analysis for oxidative stress and apoptosis-related gene panels as well as immunohistochemistry were performed. Results. RLX upregulated SOD2 and NFKB expression to 135% (p = 0.042) and 125% (p = 0.019), respectively, while RIPK1 expression was downregulated to 82% (p = 0.016) of corresponding controls. Further RLX significantly downregulated RIPK1 and MLKL expression and decreased the number of Caspase 3- and MPO-positive cells in grafts after SCS. Conclusions. RLX supplemented Custodiol® significantly decreased IRI via both antioxidant and anti-apoptotic mechanisms. Clinical trials are warranted to implement synthetic human RLX as a novel additive to preservation solutions against IRI. Full article
Show Figures

Figure 1

16 pages, 4807 KB  
Article
Menstrual Blood-Derived Endometrial Stem Cells’ Impact for the Treatment Perspective of Female Infertility
by Giedrė Skliutė, Raminta Baušytė, Veronika Borutinskaitė, Giedrė Valiulienė, Algirdas Kaupinis, Mindaugas Valius, Diana Ramašauskaitė and Rūta Navakauskienė
Int. J. Mol. Sci. 2021, 22(13), 6774; https://doi.org/10.3390/ijms22136774 - 24 Jun 2021
Cited by 27 | Viewed by 6764
Abstract
When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically [...] Read more.
When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders. Full article
Show Figures

Figure 1

13 pages, 2414 KB  
Article
Relaxin-2 May Suppress Endometriosis by Reducing Fibrosis, Scar Formation, and Inflammation
by Osamu Yoshino, Yosuke Ono, Masako Honda, Kyoko Hattori, Erina Sato, Takehiro Hiraoka, Masami Ito, Mutsumi Kobayashi, Kenta Arai, Hidekazu Katayama, Hiroyoshi Tsuchida, Kaori Yamada-Nomoto, Shunsuke Iwahata, Yoshiyuki Fukushi, Shinichiro Wada, Haruko Iwase, Kaori Koga, Yutaka Osuga, Michio Iwaoka and Nobuya Unno
Biomedicines 2020, 8(11), 467; https://doi.org/10.3390/biomedicines8110467 - 31 Oct 2020
Cited by 15 | Viewed by 5329
Abstract
Background: Relaxin (RLX)-2, produced by the corpus luteum and placenta, is known to be potentially effective in fibrotic diseases of the heart, lungs, kidneys, and bladder; however, its effectiveness in endometriosis has not yet been investigated. In the present study, we conducted a [...] Read more.
Background: Relaxin (RLX)-2, produced by the corpus luteum and placenta, is known to be potentially effective in fibrotic diseases of the heart, lungs, kidneys, and bladder; however, its effectiveness in endometriosis has not yet been investigated. In the present study, we conducted a comprehensive study on the effect of RLX-2 on endometriosis. We checked the expressions of LGR-7, a primary receptor of RLX-2, in endometriomas using immunohistochemistry. Endometriotic stromal cells (ESCs) purified from surgical specimens were used in in vitro experiments. The effects of RLX-2 on ESCs were evaluated by quantitative-PCR, ELISA, and Western blotting. Gel contraction assay was used to assess the contraction suppressive effect of RLX-2. The effect of RLX-2 was also examined in the endometriosis mouse model. LGR-7 was expressed in endometriotic lesions. In ESCs, RLX-2 increased the production of cAMP and suppressed the secretion of interleukin-8, an inflammatory cytokine, by 15% and mRNA expression of fibrosis-related molecules, plasminogen activator inhibitor-1 (PAI-1), and collagen-I by approximately 50% (p < 0.05). In the gel contraction assay, RLX-2 significantly suppressed the contraction of ESCs, which was cancelled by removing RLX-2 from the medium or by adding H89, a Protein Kinase A (PKA) inhibitor. In ESCs stimulated with RLX-2, p38 MAPK phosphorylation was significantly suppressed. In the endometriosis mouse model, administration of RLX-2 significantly decreased the area of the endometriotic-like lesion with decreasing fibrotic component compared to non-treated control (p = 0.01). RLX-2 may contribute to the control of endometriotic lesion by suppressing fibrosis, scar formation, and inflammation. Full article
(This article belongs to the Special Issue Advanced Research in Endometriosis)
Show Figures

Figure 1

13 pages, 3477 KB  
Article
Human Relaxin-2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia–Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up-Regulation
by Silvia Nistri, Claudia Fiorillo, Matteo Becatti and Daniele Bani
Antioxidants 2020, 9(9), 774; https://doi.org/10.3390/antiox9090774 - 21 Aug 2020
Cited by 21 | Viewed by 3348
Abstract
Serelaxin (RLX) designates the pharmaceutical form of the human natural hormone relaxin-2 that has been shown to markedly reduce tissue and cell damage induced by hypoxia and reoxygenation (HR). The evidence that RLX exerts similar protective effects on different organs and cells at [...] Read more.
Serelaxin (RLX) designates the pharmaceutical form of the human natural hormone relaxin-2 that has been shown to markedly reduce tissue and cell damage induced by hypoxia and reoxygenation (HR). The evidence that RLX exerts similar protective effects on different organs and cells at relatively low, nanomolar concentrations suggests that it specifically targets a common pathogenic mechanism of HR-induced damage, namely oxidative stress. In this study we offer experimental evidence that RLX (17 nmol L-1), added to the medium of HR-exposed H9c2 rat cardiac muscle cells, significantly reduces cell oxidative damage, mitochondrial dysfunction and apoptosis. These effects appear to rely on the up-regulation of the cellular availability of reduced glutathione (GSH), a ubiquitous endogenous antioxidant metabolite. Conversely, superoxide dismutase activity was not influenced by RLX, which, however, was not endowed with chemical antioxidant properties. Taken together, these findings verify the major pharmacological role of RLX in the protection against HR-induced oxidative stress, and shed first light on its mechanisms of action. Full article
Show Figures

Graphical abstract

12 pages, 717 KB  
Article
Pretreatment with Relaxin Does Not Restore NO-Mediated Modulation of Calcium Signal in Coronary Endothelial Cells Isolated from Spontaneously Hypertensive Rats
by Silvia Nistri, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Matteo Zanardelli, Daniele Bani and Paola Failli
Molecules 2015, 20(6), 9524-9535; https://doi.org/10.3390/molecules20069524 - 26 May 2015
Cited by 5 | Viewed by 6335
Abstract
We demonstrated that in coronary endothelial cells (RCEs) from normotensive Wistar Kyoto rats (WKY), the hormone relaxin (RLX) increases NO production and reduces calcium transients by a NO-related mechanism. Since an impairment of the NO pathway has been described in spontaneously hypertensive rats [...] Read more.
We demonstrated that in coronary endothelial cells (RCEs) from normotensive Wistar Kyoto rats (WKY), the hormone relaxin (RLX) increases NO production and reduces calcium transients by a NO-related mechanism. Since an impairment of the NO pathway has been described in spontaneously hypertensive rats (SHR), the present study was aimed at exploring RLX effects on RCEs from SHR, hypothesizing that RLX could restore calcium responsiveness to NO. RCEs were isolated from WKY and SHR. Calcium transients were evaluated by image analysis after the administration of angiotensin II or α-thrombin. Angiotensin II (1 µM) caused a prompt rise of [Ca2+]i in WKY and SHR RCEs and a rapid decrease, being the decay time higher in SHR than in WKY. NOS inhibition increased calcium transient in WKY, but not in SHR RCEs. Whereas RLX pretreatment (24 h, 60 ng/mL) was ineffective in SHR, it strongly reduced calcium transient in WKY in a NO-dependent way. A similar behavior was measured using 30 U/mL α-thrombin. The current study offers evidence that RLX cannot restore NO responsiveness in SHR, suggesting an accurate selection of patients eligible for RLX treatment of cardiovascular diseases. Full article
(This article belongs to the Special Issue Nitric Oxide (NO) Release Chemistry)
Show Figures

Graphical abstract

Back to TopTop