Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = H7PX glioma cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2520 KB  
Communication
Insight the Biological Activities of Selected Abietane Diterpenes Isolated from Plectranthus spp.
by Przemysław Sitarek, Monika Toma, Epole Ntungwe, Tomasz Kowalczyk, Ewa Skała, Joanna Wieczfinska, Tomasz Śliwiński and Patricia Rijo
Biomolecules 2020, 10(2), 194; https://doi.org/10.3390/biom10020194 - 28 Jan 2020
Cited by 22 | Viewed by 4251
Abstract
Natural compounds isolated from plants are excellent starting points in drug design and have been widely studied as anticancer agents; they hence find use in a considerable proportion of anticancer drugs. The genus Plectranthus (Lamiaceae) comprises a large and widespread group of species [...] Read more.
Natural compounds isolated from plants are excellent starting points in drug design and have been widely studied as anticancer agents; they hence find use in a considerable proportion of anticancer drugs. The genus Plectranthus (Lamiaceae) comprises a large and widespread group of species with various applications in traditional medicine. Therefore, the aim of the present study was to determine the effectiveness of treatment with four abietane diterpenoids isolated from P. madagascariensis and P. ecklonii, 6,7-dehydroroyleanone, 7β,6β-dihydroxyroyleanone, 7α-acetoxy-6β-hydroxyroyleanone and parvifloron D, in initiating apoptosis in a glioma cell line. The pure compounds were found to exhibit anticancer effects in primary H7PX glioma cells line by inducing apoptosis G2/M cell cycle arrest and double-strand breaks, indicated by increased levels of phosphorylated H2A.X and decreasing mitochondrial membrane potential; they also influenced the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, or Cas-3). Our findings indicate that these compounds may offer potential as beneficial antitumor drugs but further in vivo studies are needed. Full article
(This article belongs to the Special Issue Selected Papers from Bio.Natural Meeting 2019)
Show Figures

Graphical abstract

14 pages, 1230 KB  
Article
In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin–Tetrazolyl and –Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity
by Luís M. T. Frija, Epole Ntungwe, Przemysław Sitarek, Joana M. Andrade, Monika Toma, Tomasz Śliwiński, Lília Cabral, M. Lurdes S. Cristiano, Patrícia Rijo and Armando J. L. Pombeiro
Pharmaceuticals 2019, 12(4), 167; https://doi.org/10.3390/ph12040167 - 12 Nov 2019
Cited by 14 | Viewed by 4757
Abstract
The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin–tetrazolyl and –thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against [...] Read more.
The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin–tetrazolyl and –thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against Gram-positive and Gram-negative bacteria and yeasts. Scrutiny of the MIC and MBC values of the compounds at pH 4.0, 7.0, and 9.0 against four Gram-positive strains revealed high values for both the MIC and MBC at pH 4.0 (ranging from 0.98 to 125 µg/mL) and moderate values at pH 7.0 and 9.0, exposing strong antimicrobial activities in an acidic medium. An antioxidant activity analysis of the molecules was performed by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, which showed high activity for the TSMT (N-(1-methyl-2H-tetrazol-5-yl)-N-(1,1-dioxo-1,2-benzisothiazol-3-yl) amine, 7) derivative (90.29% compared to a butylated hydroxytoluene positive control of 61.96%). Besides, the general toxicity of the saccharin analogs was evaluated in an Artemia salina model, which displayed insignificant toxicity values. In turn, upon an assessment of cell viability, all of the compounds were found to be nontoxic in range concentrations of 0–100 µg/mL in H7PX glioma cells. The tested molecules have inspiring antimicrobial and antioxidant properties that represent potential core structures in the design of new drugs for the treatment of infectious diseases. Full article
(This article belongs to the Special Issue Novel Antibacterial Agents)
Show Figures

Graphical abstract

15 pages, 1900 KB  
Article
TRAIL and Paclitaxel Synergize to Kill U87 Cells and U87-Derived Stem-Like Cells in Vitro
by Bo Qiu, Xiyang Sun, Dongyong Zhang, Yong Wang, Jun Tao and Shaowu Ou
Int. J. Mol. Sci. 2012, 13(7), 9142-9156; https://doi.org/10.3390/ijms13079142 - 20 Jul 2012
Cited by 28 | Viewed by 9521
Abstract
U87-derived stem-like cells (U87-SLCs) were cultured using serum-free stem cell media and identified by both biological behaviors and markers. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and paclitaxel (PX), in combination or alone, was used to treat U87-MG human glioma cells (U87 cells) [...] Read more.
U87-derived stem-like cells (U87-SLCs) were cultured using serum-free stem cell media and identified by both biological behaviors and markers. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and paclitaxel (PX), in combination or alone, was used to treat U87-MG human glioma cells (U87 cells) or U87-SLCs. The results showed that TRAIL/PX cannot only synergistically inhibit U87 cells but also U87-SLCs. We observed a significantly higher apoptotic rate in U87 cells simultaneously treated with TRAIL/PX for 24 h compared to cells treated with either drug alone. Furthermore, there was a remarkably higher apoptosis rate in U87-SLCs induced by the TRAIL/PX combination compared with either drug alone. Unlike the simultaneous treatment in U87 cells, U87-SLCs were pretreated for 24 h with 1 μmol/L of PX followed by 1000 ng/mL of TRAIL. Protein assays revealed that TRAIL/PX synergy was related to DR4, cleaved caspase-8 and cleaved caspase-3 upregulation, whereas the mitochondrial pathway was not involved in TRAIL-induced apoptosis. The present study indicates that PX can sensitize U87 cells and U87-SLCs to TRAIL treatment through an extrinsic pathway of cell apoptosis. The combined treatment of TRAIL and PX may be a promising glioma chemotherapy because of its successful inhibition of U87-SLCs, which are hypothesized to influence chemotherapeutic outcomes of gliomas. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop