Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Hypercarb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4448 KB  
Article
Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology
by Emanuela Verdini, Tommaso Pacini, Serenella Orsini, Stefano Sdogati and Ivan Pecorelli
Foods 2024, 13(19), 3131; https://doi.org/10.3390/foods13193131 - 30 Sep 2024
Cited by 2 | Viewed by 1907
Abstract
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in [...] Read more.
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in chicken eggs using a score-based methodology. Analytes include glyphosate, its metabolites, and other high-polarity pesticides like Ethephon, Glufosinate, and Fosetyl aluminum, included in the EU’s official control plan. Polar pesticides, characterized by high polarity and hydrophilicity, lead to analytical issues such as poor retention and unconventional peak shapes with traditional reversed-phase methods. Their weak interaction with hydrophobic stationary phases complicates separation, necessitating specific stationary phases to enhance retention and selectivity. This study evaluates these columns’ efficacy in complex matrices like chicken eggs and other food samples. Chromatographic separation was performed using a UPLC system coupled with a Q-TOF mass spectrometer; extraction and purification involved freeze-out, centrifugation, and filtration steps. The study highlights the critical role of column selection in achieving accurate and reliable separation and quantification of highly polar analytes in matrices of animal origin, offering in the meantime an easy-to-apply methodology of selection for the right determination of the best chromatographic column for different purposes. Full article
Show Figures

Figure 1

16 pages, 2072 KB  
Article
Direct Determination of Glyphosate and Its Metabolites in Foods of Animal Origin by Liquid Chromatography–Tandem Mass Spectrometry
by Marija Denžić Lugomer, Nina Bilandžić, Damir Pavliček and Tiana Novosel
Foods 2024, 13(15), 2451; https://doi.org/10.3390/foods13152451 - 2 Aug 2024
Cited by 2 | Viewed by 3702
Abstract
Glyphosate is the most used herbicide in agriculture. Its major metabolite is AMPA (aminomethylphosphonic acid), but N-acetyl-AMPA and N-acetylglyphosate are also metabolites of interest. For risk assessment, a general residue definition was proposed as the sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, expressed [...] Read more.
Glyphosate is the most used herbicide in agriculture. Its major metabolite is AMPA (aminomethylphosphonic acid), but N-acetyl-AMPA and N-acetylglyphosate are also metabolites of interest. For risk assessment, a general residue definition was proposed as the sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, expressed as glyphosate. A confirmatory method for glyphosate in fat, liver and kidneys, as well as a confirmatory method for AMPA and N-acetyl-glyphosate in all matrices, are still missing. In this paper, we present a method for the quantitative determination of glyphosate residues and its metabolites AMPA, N-acetyl-AMPA and N-acetyl-glyphosate by liquid chromatography–mass spectrometry (LC-MS/MS) in adipose tissue, liver, eggs, milk and honey without derivatization. Different chromatographic columns were tested, with the Hypercarb column providing the best results. The analytes were eluted with mobile phases of acidified water with 1.2% formic acid and 0.5% formic acid in acetonitrile. Sample purification procedures were also optimized by varying the solvent extraction mixtures (water, methanol and mixture ψ (methanol, water) = 1:1, each with the addition of 1% formic acid (v/v)), using different sorbents in solid phase extraction (SPE) (polymeric cationic (PCX) and anionic (PAX)) and using dispersive solid phase extraction (dSPE) (C18 and PSA) by modifying the extraction procedures. Finally, the analytes were extracted from the samples with 1% formic acid in water (v/v). Milk and adipose tissue were purified by the addition of dichloromethane, while liver and egg samples were purified by SPE with a mixed cation exchange sorbent and ultrafiltration with cut-off filters. The proposed analytical procedures were validated according to SANTE/11312/2021 guidelines: linearity, limits of quantification, precision and accuracy were determined for all matrices. The limits of quantification (LOQs) ranged from 0.025 to 0.2 mg kg−1. Precision, expressed as relative standard deviation, was <20%, while accuracy, expressed as analytical recovery, ranged from 70% to 120%. During method validation, the measurement uncertainty was estimated to be <50% for all analytes. Good validation parameters according to the SANTE document were achieved for all analytes. Therefore, the method can be considered reliable and sensitive enough for routine monitoring of polar pesticides. The application of the accredited method in routine analysis will provide data that are useful for the re-evaluation of risk assessment studies in foods of animal origin. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 7134 KB  
Proceeding Paper
Computational Model of Adsorption for Hydroxybenzoate Saxitoxin Derivatives (GCs) on Graphene Surface
by Mercedes Álvarez, Manuel Lolo and Álvaro Antelo
Chem. Proc. 2023, 14(1), 94; https://doi.org/10.3390/ecsoc-27-16038 - 15 Nov 2023
Viewed by 971
Abstract
Here, we report on the determination of the supramolecular adsorption of hydroxybenzoate derivates (GC toxins) of saxitoxin to a pristine graphene surface using the computational method, MMFF94 Force Field implemented in the Chem Office package. We use a simple model with the GC [...] Read more.
Here, we report on the determination of the supramolecular adsorption of hydroxybenzoate derivates (GC toxins) of saxitoxin to a pristine graphene surface using the computational method, MMFF94 Force Field implemented in the Chem Office package. We use a simple model with the GC molecule centred on the graphene surface, to simulate the interaction of GC molecule stacking on the graphene system, avoiding edge interactions. We find that the formation of the GC–graphene complex is favourable for all GC molecules. The results of our model are in good agreement with chromatographic elution results on the graphite surface, specifically the Hypercarb column. We predict that these aromatic saxitoxin derivatives possess a higher adsorption energy than non-aromatic ones. π-π stacking can be regarded as being a prevalent contribution compared to non-aromatic analogues. Furthermore, MMFF94 adsorption results yield qualitative agreement with experiments within N-OH and N-H sub-families: in the computational model, the interaction energy value’s order is GC6-GC5-GC4-GC3-GC2-GC1 (the highest adsorption energy). In the experimental Hypercarb model, the elution order is GC3-GC6-GC2-GC5-GC4-GC1 (the highest retention time). The proposed MMFF94 research framework works well in the assessment of chromatographic selectivity. This simple model has the potential for use in predicting the qualitative interactions of small polar molecules and graphene, which sheds light on the application of computational techniques to help in analytical method development. Full article
Show Figures

Figure 1

13 pages, 1154 KB  
Article
Determination of Pentacyclic Triterpenoids in Plant Biomass by Porous Graphitic Carbon Liquid Chromatography—Tandem Mass Spectrometry
by Ilya S. Voronov, Danil I. Falev, Anna V. Faleva, Nikolay V. Ul’yanovskii and Dmitry S. Kosyakov
Molecules 2023, 28(9), 3945; https://doi.org/10.3390/molecules28093945 - 7 May 2023
Cited by 5 | Viewed by 2683
Abstract
Pentacyclic triterpenoids (PCTs), which possess a number of bioactive properties, are considered one of the most important classes of secondary plant metabolites. Their chromatographic determination in plant biomass is complicated by the need to separate a large number of structurally similar compounds belonging [...] Read more.
Pentacyclic triterpenoids (PCTs), which possess a number of bioactive properties, are considered one of the most important classes of secondary plant metabolites. Their chromatographic determination in plant biomass is complicated by the need to separate a large number of structurally similar compounds belonging to several classes that differ greatly in polarity (monools, diols, and triterpenic acids). This study proposes a rapid, sensitive, and low-cost method for the simultaneous quantification of ten PCTs (3β-taraxerol, lupeol, β-amyrin, α-amyrin, betulin, erythrodiol, uvaol, betulinic, oleanolic, and ursolic acids) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using porous graphitic carbon (Hypercarb) as a stationary phase capable of hydrophobic retention and specific interactions with analytes. Revealing the effects of the mobile phase composition, pH, ionic strength, and column temperature on retention and selection of chromatographic conditions on this basis allowed for the effective separation of all target analytes within 8 min in gradient elution mode and attaining limits of detection in the range of 4–104 µg L−1. The developed method was fully validated and successfully tested in the determination of PCTs in common haircap (Polytrichum commune) and prairie sphagnum (Sphagnum palustre) mosses, and fireweed (Chamaenerion angustifolium) stems and leaves. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

20 pages, 3169 KB  
Article
Quantification of Plasma and Urine Thymidine and 2’-Deoxyuridine by LC-MS/MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy
by Karin Kipper, Max Hecht, Natalicia J. Antunes, Lynette D. Fairbanks, Michelle Levene, Sema Kalkan Uçar, Andrew Schaefer, Emma L. Blakely and Bridget E. Bax
J. Clin. Med. 2020, 9(3), 788; https://doi.org/10.3390/jcm9030788 - 13 Mar 2020
Cited by 10 | Viewed by 4769
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2’-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy [...] Read more.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2’-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2’-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC–MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2’-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10–10,000 ng/mL for plasma, and 1–50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

Back to TopTop