Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = LiNbO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3572 KB  
Article
Comprehensive Utilization Beneficiation Process of Lithium Pegmatite Ore: A Pilot-Scale Study
by Yanbo Xu, Wei Deng, Yinjie Wang, Bing Deng, Jing Wang and Bingxu Xu
Minerals 2025, 15(11), 1138; https://doi.org/10.3390/min15111138 - 30 Oct 2025
Abstract
Pegmatite ores, the primary and technologically advanced lithium (Li)-bearing minerals, comprise various rare metal-based elements, including niobium (Nb), tantalum (Ta), tin (Sn), and beryllium. With increasing Li demand, global exploitation of pegmatite ores has generated vast tailings, mainly comprising quartz and feldspar. However, [...] Read more.
Pegmatite ores, the primary and technologically advanced lithium (Li)-bearing minerals, comprise various rare metal-based elements, including niobium (Nb), tantalum (Ta), tin (Sn), and beryllium. With increasing Li demand, global exploitation of pegmatite ores has generated vast tailings, mainly comprising quartz and feldspar. However, the process for comprehensively utilizing valuable minerals from pegmatite ores remains undeveloped, and the persistent gap between laboratory studies and industrial practice hinders the sustainable advancement of the pegmatite mineral processing industry. Herein, a comprehensive utilization beneficiation process was designed and validated at both laboratory- and pilot-scale levels. Locked-circuit flotation tests at the laboratory-scale on spodumene and feldspar yielded (i) an Li concentrate with an Li2O grade of 5.80% and recovery of 88.62%, and (ii) a feldspar concentrate with a (K2O + Na2O) grade of 11.41% and good recoveries of K2O (81.30%) and Na2O (84.81%). In a 72 h continuous pilot-scale test, an Li flotation concentrate with an Li2O grade of 5.72% and recovery of 86.78%, and a final Li concentrate with an Li2O grade of 5.89% and recovery of 86.56% were obtained. Using Li flotation tailings as feed, a feldspar concentrate with a (K2O + Na2O) grade of 11.41% was obtained, achieving K2O and Na2O recoveries of >75%. The proposed process realizes nearly overall mineral recovery from the pegmatite ores, producing qualified concentrates of Li, Nb–Ta, Sn, feldspar, and quartz. In water reuse feasibility tests, ferrous sulfate (FeSO4) was identified as the optimum flocculant at a dosage of 1000 g m−3. In the locked-circuit test with returned water, the consumption of sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and EMT-12 (collector) was reduced by 18.75%, 3.33%, and 3.45%, respectively, while the flotation indices of the Li concentrate (Li2O grade of 5.77% and recovery of 86.47%) were slightly lower than those in freshwater. In addition to increasing economic benefits, the process offers considerable reductions in tailings disposal, full utilization of multiple elements, and a potential decrease in water and reagent consumption. This study provides important guidelines for the mineral processing of Li pegmatite and other associated multimetallic ores. Full article
Show Figures

Figure 1

22 pages, 29749 KB  
Article
Phase Formation Study of Solid-State LLZNO and LLZTO via Structural, Thermal, and Morphological Analyses
by Chengjian Li, Frank Kern, Lianmeng Liu, Christopher Parr, Andreas Börger and Chunfeng Liu
Ceramics 2025, 8(4), 132; https://doi.org/10.3390/ceramics8040132 - 28 Oct 2025
Viewed by 173
Abstract
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte candidate for ASSLBs, owing to its wide electrochemical window and intrinsic safety. Yet phase-pure LLZO remains difficult because secondary phases form, and the transition towards the tetragonal phase, aliovalent [...] Read more.
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte candidate for ASSLBs, owing to its wide electrochemical window and intrinsic safety. Yet phase-pure LLZO remains difficult because secondary phases form, and the transition towards the tetragonal phase, aliovalent doping, mitigates these issues. Still, the phase formation pathway is not fully understood. Here, we present comparative in situ and ex situ studies of Nb- and Ta-doped LLZO (LLZNO and LLZTO) that were synthesized by a solid-state reaction. In situ/ex situ XRD reveals that the lithium precursor dictates the reaction path: differing decomposition temperatures of the lithium precursor define reaction windows that control cubic-phase purity and particle morphology. In air, limited Li diffusion favors oxycarbonates and pyrochlore, necessitating 950–1050 °C to achieve phase-pure cubic LLZO. Under N2, faster Li availability and diffusion enable uniform nucleation and a route to cubic LLZO without detectable secondary phases. These findings demonstrate the coupled effects of temperature, precursor, dopant, and atmosphere, guiding process optimization and scalable production. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

25 pages, 9280 KB  
Article
Petrogenesis of the Chamuhan Intrusion in the Southern Great Xing’an Range: Constraints from Zircon U-Pb Dating and Petrogeochemistry
by Yutong Song, Gongzheng Chen, Guang Wu, Tiegang Li, Tong Zhang, Jinfang Wang, Yingjie Li, Chenyu Liu, Yuze Li and Yinlong Wang
Minerals 2025, 15(10), 1085; https://doi.org/10.3390/min15101085 - 18 Oct 2025
Viewed by 187
Abstract
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. [...] Read more.
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. The Chamuhan deposit, a small-sized W–Mo polymetallic deposit in SGXR, is genetically linked to a concealed fine-grained porphyritic alkali feldspar granite intrusion. In this study, we present the LA-ICP-MS zircon U-Pb ages, whole-rock geochemical, and electron probe microanalysis (EPMA) mineral chemistry to constrain the petrogenesis and metallogenic implications of this granite. Zircon U–Pb dating yields a crystallization age of 141.3 ± 1.2 Ma, consistent with molybdenite Re–Os ages. The granite is characterized by elevated SiO2 (76.9–79.1 wt%) and total alkalis (7.3–8.5 wt%), and exhibits peraluminous high-K calc-alkaline affinity (A/CNK = 1.37–1.57). Geochemical signatures reveal enrichment in large ion lithophile elements (LILEs, e.g., Rb, Th, U) coupled with depletion in high-field strength elements (HFSEs, e.g., Ba, Sr, P, Eu, Ti, Nb, Ta), and are accompanied by right-sloping REE patterns with LREE enrichment and HREE depletion. EPMA data indicate that the mica in the intrusion is primarily zinnwaldite and Li-rich phengite, whereas the plagioclase occurs as albite. The feldspar thermobarometry yields crystallization temperatures of 689–778 °C and 313 MPa–454 MPa, while the melt H2O content and oxygen fugacity are 8.61–11.1 wt% and −22.58–−14.48, respectively. These geochemical signatures indicate that the granites are highly fractionated I-type granites with extensive fractional crystallization of various minerals like plagioclase, K-feldspar, and apatite, etc. From the Late Jurassic to the Early Cretaceous, the subduction and rollback of the Paleo-Pacific Ocean plate resulted in extensional tectonic environments in eastern China. Asthenospheric upwelling and lower crustal melting generated parental magmas, wherein progressive fractional crystallization during ascent concentrated ore-forming elements and volatiles within residual melts. This process played a key role in the formation of the Chamuhan deposit, exemplifying the metallogenic potential of highly evolved granitic systems in the SGXR. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

17 pages, 91562 KB  
Article
Mineralogy and Critical Metal Distribution in Upper Carboniferous Aluminum-Bearing Strata from the Yangquan Mining Area, Northeastern Qinshui Basin: Insights from TIMA
by Ning Wang, Yingxia Xu, Jun Zhao, Shangqing Zhang, Zhiyi Liu and Menghuai Hou
Minerals 2025, 15(10), 1069; https://doi.org/10.3390/min15101069 - 12 Oct 2025
Viewed by 278
Abstract
Critical metals associated with aluminum-bearing strata have garnered increasing attention due to their considerable economic potential. Recent investigations have identified notable enrichment of Li, Ga, Zr, Nb, REEs (rare earth elements), etc., within the Upper Carboniferous Benxi Formation in the Yangquan mining area, [...] Read more.
Critical metals associated with aluminum-bearing strata have garnered increasing attention due to their considerable economic potential. Recent investigations have identified notable enrichment of Li, Ga, Zr, Nb, REEs (rare earth elements), etc., within the Upper Carboniferous Benxi Formation in the Yangquan mining area, the Northeastern Qinshui Basin, Northern China. However, their mineralogical characteristics and micro-scale modes of occurrence remain insufficiently constrained. In this study, we employed the TESCAN Integrated Mineral Analyzer (TIMA) in combination with X-ray diffraction (XRD) and clay-separation experiments to provide direct mineralogical evidence for the occurrence of Ti, Li, Ga, Zr, and REEs in claystone and aluminous claystone from the Benxi Formation, Yangquan mining area, Northeastern Qinshui Basin. Our results indicate that both lithologies are primarily composed of kaolinite and diaspore, with minor amounts of anatase and cookeite; illite is additionally present in the claystone. Titanium predominantly occurs as anatase in both lithologies, though a portion in aluminous claystone may be incorporated into kaolinite and other Ti-bearing minerals such as rutile and leucoxene. Lithium is primarily hosted by cookeite in both rock types. Mineral assemblage variations further suggest that kaolinite may have partially transformed into Li-rich chlorite (i.e., cookeite) during the transformation from aluminous claystone to claystone. Gallium is chiefly associated with diaspore and kaolinite, with a stronger correlation with diaspore in the aluminous claystone. Zircon is the sole carrier of Zr in both lithologies. Importantly, La and Ce show a consistent spatial association with O–Al–Si–Ti–P mixed aggregates in TIMA maps, particularly in aluminous claystone. Based on these spatial patterns, textural relationships, and comparisons with previous studies, phosphate minerals are inferred to be the dominant REE hosts, although minor contributions from other phases cannot be completely excluded. These findings highlight a previously underexplored mode of critical-metal enrichment in Northern Chinese bauxite-bearing strata and provide a mineralogical basis for future extraction and utilization. Full article
Show Figures

Figure 1

17 pages, 8135 KB  
Article
High-Precision Alignment Method for Electro-Optic Modulators via Combined Twyman-Green and Conoscopic Interferometry
by Peng Zhang and Qi Lu
Sensors 2025, 25(19), 6231; https://doi.org/10.3390/s25196231 - 8 Oct 2025
Viewed by 435
Abstract
Electro-optic modulators (EOMs) are critical components in advanced optical systems, including quantum communications and high-resolution imaging, where precise alignment is essential for optimal performance. However, conventional methods struggle to simultaneously achieve accurate optical axis, transmission axis, and azimuthal alignment of EOM components. This [...] Read more.
Electro-optic modulators (EOMs) are critical components in advanced optical systems, including quantum communications and high-resolution imaging, where precise alignment is essential for optimal performance. However, conventional methods struggle to simultaneously achieve accurate optical axis, transmission axis, and azimuthal alignment of EOM components. This study proposes a high-precision alignment method that synergistically combines Twyman-Green and conoscopic interferometry. The Twyman-Green system first ensures precise optical axis alignment of the electro-optic crystal by minimizing tilt errors. Subsequently, under zero applied voltage, conoscopic interferometry is used to align the transmission axes of the polarizer and analyzer by verifying that the centroids of the interference features orient at 45° and 135°. Finally, under half-wave voltage, azimuthal alignment of the electro-optic crystal is achieved by ensuring the same centroid orientation. Experimental validation using a Z-cut LiNbO3 modulator demonstrates exceptional alignment accuracy, with root mean square errors below 0.2862 mrad for transmission axis alignment and 0.3229 mrad for azimuthal alignment. The proposed method offers a robust solution for high-precision EOM alignment in demanding applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 2115 KB  
Article
The Role of Anharmonicity in (Anti-)Ferroelectric Alkali Niobates
by Leif Carstensen and Wolfgang Donner
Materials 2025, 18(19), 4593; https://doi.org/10.3390/ma18194593 - 3 Oct 2025
Viewed by 327
Abstract
NaNbO3 (NN), known for the complexity of its phase transition sequence, is antiferroelectric (AFE) at room temperature, while both LiNbO3 (LN) and KNbO3 (KN) are ferroelectric (FE). The origin of ferroelectricity in ABO3 perovskites is believed to lie in [...] Read more.
NaNbO3 (NN), known for the complexity of its phase transition sequence, is antiferroelectric (AFE) at room temperature, while both LiNbO3 (LN) and KNbO3 (KN) are ferroelectric (FE). The origin of ferroelectricity in ABO3 perovskites is believed to lie in the B-O hybridization, but the origin of antiferroelectricity remains unclear. Recent ab initio studies have shown that the same B-O hybridization is necessary in AFE and proposed an additional, anharmonic contribution to the potential of the A-site atom as the crucial difference between FE and AFE perovskites. We used structure factors obtained from X-ray diffraction experiments in combination with the Maximum Entropy Method to obtain electron densities for LN, KN, and NN and identify differences in their bonding behavior. We present experimental evidence for anharmonic A-site contributions of varying strength in alkali niobates, pointing at a new path for the design of (anti-)ferroelectric materials. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

17 pages, 7778 KB  
Article
Fourier Analysis of the Nonlinearity of Surface-Relief Optical Transmission Gratings of Quasi-Sinusoidal Profile Fabricated in Optical Glasses and Crystals by Carbon, Nitrogen and Oxygen Ion Microbeams
by István Bányász, István Rajta, Vladimir Havránek, Robert Magnusson and Gyula Nagy
Photonics 2025, 12(10), 978; https://doi.org/10.3390/photonics12100978 - 1 Oct 2025
Viewed by 251
Abstract
Optical transmission gratings with quasi-sinusoidal surface-relief profiles were inscribed in IOG and Pyrex glasses and in Bi12GeO20, Er: LiNbO3, and Er: Fe: LiNbO3 crystals by microbeams of carbon, nitrogen, and oxygen ions at ion energies of 5, [...] Read more.
Optical transmission gratings with quasi-sinusoidal surface-relief profiles were inscribed in IOG and Pyrex glasses and in Bi12GeO20, Er: LiNbO3, and Er: Fe: LiNbO3 crystals by microbeams of carbon, nitrogen, and oxygen ions at ion energies of 5, 6, and 10.5 MeV. Grating constants were 4, 8, and 16 μm. Amplitudes of the surface-relief gratings were in the 10–2000 nm range. The diffraction efficiency of the gratings was measured at a wavelength of 640 nm. Maximum diffraction efficiencies were close to the theoretical maximum of 33% for thin gratings. Grating profiles were measured by optical microscopic profilometry. Measurement of the diffraction efficiencies at higher orders and Fourier analysis of the grating profiles revealed the dependence of the residual nonlinearity of the grating profiles on the implanted ion fluence. The ion microbeam-written gratings can be used as light coupling elements in integrated optics for sensors and telecommunication. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Optics and Photonics)
Show Figures

Figure 1

23 pages, 4516 KB  
Review
Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review
by Ching-Ting Lee and Hsin-Ying Lee
Micromachines 2025, 16(10), 1077; https://doi.org/10.3390/mi16101077 - 23 Sep 2025
Viewed by 374
Abstract
The photoelectrochemical oxidation method was utilized to directly grow a gate oxide layer and simultaneously create gate-recessed regions for fabricating GaN-based depletion-mode metal-oxide-semiconductor high-electron mobility transistors (D-mode MOSHEMTs). The LiNbO3 gate ferroelectric layer and stacked gate oxide layers of LiNbO3/HfO [...] Read more.
The photoelectrochemical oxidation method was utilized to directly grow a gate oxide layer and simultaneously create gate-recessed regions for fabricating GaN-based depletion-mode metal-oxide-semiconductor high-electron mobility transistors (D-mode MOSHEMTs). The LiNbO3 gate ferroelectric layer and stacked gate oxide layers of LiNbO3/HfO2/Al2O3 were respectively deposited on the created gate-recessed regions using the photoelectrochemical etching method to fabricate the GaN-based enhancement mode MOSHEMTs (E-mode MOSHEMTs). GaN-based complementary integrated circuits were realized by monolithically integrating the D-mode MOSHEMTs and the E-mode MOSHEMTs. The performances of the inverter circuit manufactured using the integrated GaN-based complementary MOSHEMTs were measured and analyzed. Full article
Show Figures

Figure 1

19 pages, 6850 KB  
Article
Geochronology and Geochemistry of the Galale Cu–Au Deposit in the Western Segment of the Bangong–Nujiang Suture Zone: Implications for Molybdenum Potential
by Chang Liu, Zhusen Yang, Xiaoyan Zhao and Jingtao Mao
Minerals 2025, 15(9), 975; https://doi.org/10.3390/min15090975 - 15 Sep 2025
Viewed by 415
Abstract
The Galale Cu–Au deposit lies on the northern margin of the western Gangdese metallogenic belt, near the western edge of the Gangdese arc within the Bangong–Nujiang suture zone. Unlike the well-studied Miocene Cu belt in southern Gangdese, this region remains insufficiently investigated, particularly [...] Read more.
The Galale Cu–Au deposit lies on the northern margin of the western Gangdese metallogenic belt, near the western edge of the Gangdese arc within the Bangong–Nujiang suture zone. Unlike the well-studied Miocene Cu belt in southern Gangdese, this region remains insufficiently investigated, particularly in terms of geochemical characterization, leading to an ambiguous metallogenic model and a debated tectonic setting—specifically, the unresolved issue of subduction polarity across the Bangong–Nujiang suture. This tectonic ambiguity has important implications for understanding magma sources, metal transport pathways, and, consequently, for guiding mineral exploration strategies in the area. To address this, we conducted zircon U–Pb dating on the ore-related quartz diorite and granodiorite, yielding crystallization ages of 84.05 ± 0.34 Ma and 77.20 ± 0.69 Ma, respectively. Integrated with previous data, these results constrain mineralization to 83–89 Ma, which includes both skarn-type Cu–polymetallic and porphyry-type Cu mineralization. Regional comparisons support a tectonic model involving slab rollback and southward subduction of the Bangong–Nujiang oceanic lithosphere. Geochemical analyses of quartz diorite, granodiorite, and monzonitic granite show high-K calc-alkaline, peraluminous I-type affinities, with enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs. Notably, the monzonitic granite is marked by high SiO2, Sr/Y, and Rb/Sr ratios, low Zr/Hf, strong LREE enrichment, weak Eu anomalies, and pronounced Nb–Ta depletion, indicating high oxygen fugacity and favorable conditions for Mo mineralization. The deposit formed through tectono-magmatic processes related to the closure of the Bangong–Nujiang Neo-Tethys Ocean. Subduction and subsequent lithospheric delamination induced partial melting of mantle and crustal sources, generating quartz diorite and granodiorite intrusions. Magmatic fluids interacted with carbonate wall rocks to form skarn assemblages, concentrating ore metals along structures. The mineralization formed within the contact zones between intrusions and surrounding country rocks. Late-stage granite porphyry intrusions (~77 Ma), inferred from major, trace, and rare earth element compositions to have the highest Mo potential, may represent an extension of earlier skarn mineralization in the area (83–89 Ma). This study presents the first comprehensive geochemical dataset for the Galale deposit, refines its metallogenic model, and identifies key geochemical indicators (e.g., Sr, Y, Nb, Rb, Zr, Hf) for Mo exploration. Full article
Show Figures

Figure 1

11 pages, 3094 KB  
Article
Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition
by Shaoqing Song, Tianqi Xiao, Jiashun Song, Hongde Liu, Dahuai Zheng, Yongfa Kong and Jingjun Xu
Crystals 2025, 15(9), 756; https://doi.org/10.3390/cryst15090756 - 27 Aug 2025
Viewed by 1069
Abstract
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication [...] Read more.
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication techniques available, pulsed laser deposition (PLD) presents a cost-effective and versatile alternative to crystalline ion slicing (CIS), particularly advantageous for achieving high doping concentrations. However, a persistent challenge in PLD-grown lithium niobate film is cracking, primarily induced by the substantial thermal stress resulting from the mismatch in thermal expansion coefficients between LN and the substrate. In this study, we implemented a series of process modifications to address the cracking issue and successfully achieved crack-free LN films by introducing a lithium-deficient phase. This approach enabled the successful fabrication of highly Fe3+-doped LN films with a high electrical conductivity of 9.95 × 10−5 S/m while also exhibiting characteristic polarization switching behavior. These results demonstrate that PLD enables the fabrication of highly doped, structurally robust LN films and holds significant potential for the development of advanced electronic and optoelectronic devices. Full article
Show Figures

Figure 1

25 pages, 3030 KB  
Review
Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices
by Yan Zhang, Xuefeng Xiao, Jiayi Chen, Han Zhang, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Inorganics 2025, 13(9), 278; https://doi.org/10.3390/inorganics13090278 - 22 Aug 2025
Cited by 1 | Viewed by 1044
Abstract
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have [...] Read more.
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have a lithium to niobium ratio ([Li]/[Nb]) close to 1:1,demonstrate superior performance characteristics compared to composition lithium niobate (Congruent Lithium Niobate (CLN), [Li]/[Nb] = 48.5:51.5) crystals. NSLN crystals have a lower coercive field (~4 kV/mm), higher electro-optic coefficient (γ33 = 38.3 pm/V), and better nonlinear optical properties. This paper systematically reviews the research progress on preparation methods, the physical properties of LN and NSLN crystals, and their applications in devices such as electro-optical modulators, optical micro-ring resonators, and holographic storage. Finally, the future development direction of NSLN crystals in the preparation process (large-size single-crystal growth and defect control) and new electro-optical devices (low voltage deflectors based on domain engineering) is envisioned. Full article
Show Figures

Figure 1

13 pages, 3824 KB  
Article
Enhanced Piezoelectric Properties and Conduction Mechanism in Na0.5Bi2.5Nb2O9 Piezoelectric Ceramics
by Jianming Deng, Kaijie Chen, Caijin Chen, Chenyang Zheng, Biao Zhang, Lanpeng Guo, Ting Wang, Kai Chen, Laijun Liu and Weiping Gong
Nanomaterials 2025, 15(17), 1293; https://doi.org/10.3390/nano15171293 - 22 Aug 2025
Viewed by 916
Abstract
In this work, (NaBi)0.5−x(LiSm)xBi2Nb2O9 (NBN-xLS, x = 0.00–0.06) ceramics were fabricated by co-doping of LiSm into Na0.5Bi2.5Nb2O9. The traditional solid-phase technique was employed [...] Read more.
In this work, (NaBi)0.5−x(LiSm)xBi2Nb2O9 (NBN-xLS, x = 0.00–0.06) ceramics were fabricated by co-doping of LiSm into Na0.5Bi2.5Nb2O9. The traditional solid-phase technique was employed for the entire synthesis process. The impact of LiSm doping on the crystal structure, dielectric, ferroelectric, and piezoelectric properties, as well as the underlying conduction mechanisms in the NBN-xLS ceramics, was analyzed systematically. The XRD patterns and the Rietveld refinement revealed that lattice distortion reduced with an increase in the LiSm doping amount. The decrease in lattice distortion significantly contributed to its improved ferroelectric and piezoelectric characteristics. The results showed that the NBN-xLS ceramics were primarily p-type materials due to their bulk-limited conduction, with oxygen holes and vacancies acting as the conducting species, and the appearance of weak ion conduction at high temperatures. The NBN-0.04LS ceramic, in particular, displayed the highest performance, with Pr, Tc, and d33 values of 9.05 μC/cm2, 777 °C, and 25.2 pC/N, respectively. Additionally, the ceramic displayed remarkable thermal stability, with its d33 retaining 95.0% of its original value after annealing at 760 °C. These results demonstrate that LiSm co-doped Na0.5Bi2.5Nb2O9 ceramics have potential for use in high-temperature sensors. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

17 pages, 5039 KB  
Article
Enhancement of Self-Collimation via Nonlinear Symmetry Breaking in Hexagonal Photonic Crystals
by Ozgur Onder Karakilinc
Photonics 2025, 12(8), 798; https://doi.org/10.3390/photonics12080798 - 8 Aug 2025
Viewed by 1074
Abstract
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive [...] Read more.
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive index. The self-collimation characteristics, transmission spectrum, group velocity dispersion (GVD), and third-order dispersion (TOD) are investigated using the Plane Wave Expansion (PWE) and Finite Difference Time Domain (FDTD) methods. The results demonstrate that increasing the nonlinear index leads to a significant flattening of the EFCs, which enhances self-collimation performance. Furthermore, symmetry-lowering perturbations improve beam confinement and enable all-angle self-collimation. These findings highlight the potential of Kerr-type nonlinear photonic crystals for integrated photonic circuits requiring precise control over light propagation. Full article
Show Figures

Figure 1

18 pages, 3371 KB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 2665
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

11 pages, 1320 KB  
Article
Power Scaling of a Narrowband-Seeded, Non-Resonant Optical Parametric Oscillator Based on Periodically Poled LiNbO3
by Tugba Temel, Subhasis Das, Gerhard Spindler, André Schirrmacher, Robert T. Murray, Marcin Piotrowski, Li Wang, Weidong Chen and Valentin Petrov
Photonics 2025, 12(8), 743; https://doi.org/10.3390/photonics12080743 - 23 Jul 2025
Viewed by 1190
Abstract
A periodically poled LiNbO3 (PPLN) non-resonant optical parametric oscillator injectionseeded by narrowband sub-50-mW CW radiation at the signal wavelength produces a >3 W average idler power at 2376 nm for a 20 kHz repetition rate, with a ~2 nm spectral linewidth. Seed [...] Read more.
A periodically poled LiNbO3 (PPLN) non-resonant optical parametric oscillator injectionseeded by narrowband sub-50-mW CW radiation at the signal wavelength produces a >3 W average idler power at 2376 nm for a 20 kHz repetition rate, with a ~2 nm spectral linewidth. Seed levels as low as 5 mW are sufficient to produce the desired spectral narrowing effect, and spectral tuning is possible by changing the seed wavelength and simultaneously adjusting the crystal temperature. The spectral features are in good agreement with numerical simulations based on the plane wave approximation. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop