Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = NSGA-III

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4958 KB  
Article
Multi-UAV Task Allocation Based on Grid-Based Particle Swarm and Genetic Hybrid Algorithm
by Yuting Xiong and Liang Zhang
Mathematics 2025, 13(22), 3591; https://doi.org/10.3390/math13223591 - 9 Nov 2025
Viewed by 216
Abstract
To address the uneven distribution of the Pareto front and insufficient convergence in multi-UAV task allocation, this paper proposes GrEAPSO, an improved algorithm that hybridizes Particle Swarm Optimization (PSO) with Genetic Algorithm (GA). GrEAPSO balances exploitation and exploration through grid partitioning, adopts a [...] Read more.
To address the uneven distribution of the Pareto front and insufficient convergence in multi-UAV task allocation, this paper proposes GrEAPSO, an improved algorithm that hybridizes Particle Swarm Optimization (PSO) with Genetic Algorithm (GA). GrEAPSO balances exploitation and exploration through grid partitioning, adopts a dual-encoding scheme coupled with crossover and mutation to enhance population diversity, and employs a grid-based environmental selection mechanism to improve the uniformity of the Pareto set. After initialization, the algorithm iteratively performs a PSO-based local search, genetic crossover and mutation, and grid-based environmental selection. The offspring and parent populations are then merged, and the archive set is updated accordingly. Across three military UAV task-allocation scenarios (small, medium, and large), GrEAPSO is benchmarked against MOPSO, NSGA-II/III, MOEA/D-DE, RVEA, IBEA, MOMVO, and MaOGOA. All experiments use a population size of 100. Its reference point is undominated and dominates some competitors, with median gains of 55.78% in hypervolume and 8.11% in spacing. Finally, the sensitive analysis further indicates that dividing the objective space into 15–20 grids offers the best trade-off between search breadth and solution distribution. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

25 pages, 3090 KB  
Article
Multi-Objective Site Selection of Underground Smart Parking Facilities Using NSGA-III: An Ecological-Priority Perspective
by Xiaodan Li, Yunci Guo, Huiqin Wang, Yangyang Wang, Zhen Liu and Dandan Sun
Eng 2025, 6(11), 305; https://doi.org/10.3390/eng6110305 - 3 Nov 2025
Viewed by 282
Abstract
In high-density urban areas where ecological protection constraints are increasingly stringent, transportation infrastructure layout must balance service efficiency and environmental preservation. From an ecological-prioritization perspective, this study proposes a three-stage multi-objective optimization strategy for siting underground smart parking facilities using the NSGA-III algorithm, [...] Read more.
In high-density urban areas where ecological protection constraints are increasingly stringent, transportation infrastructure layout must balance service efficiency and environmental preservation. From an ecological-prioritization perspective, this study proposes a three-stage multi-objective optimization strategy for siting underground smart parking facilities using the NSGA-III algorithm, with Haidian District, Beijing, as a case study. First, spatial identification and screening are conducted using GIS, integrating urban fringe-space extraction with POI, AOI, population, and transportation network data to determine candidate locations. Second, a multi-objective model is constructed to minimize green space occupation, walking distance, and construction cost while maximizing service coverage, and is solved with NSGA-III. Third, under the ecological-prioritization strategy, the solution with the lowest land occupation is selected, and marginal benefit analysis is applied to identify the optimal trade-off between ecological and economic objectives, forming a flexible decision-making framework. The findings show that several feasible schemes can achieve zero green-space occupation while maintaining high service coverage, and marginal benefit analysis identifies a cost-effective solution serving about 20,000 residents with an investment of 7 billion CNY. These results confirm that ecological protection and urban service efficiency can be reconciled through quantitative optimization, offering practical guidance for sustainable infrastructure planning. The proposed methodology integrates spatial analysis, multi-objective optimization, and post-Pareto analysis into a unified framework, addressing diverse infrastructure planning problems with conflicting objectives and ecological constraints. It offers both theoretical significance and practical applicability, supporting sustainable urban development under multiple scenarios. Full article
Show Figures

Figure 1

19 pages, 772 KB  
Article
A Systematic Intelligent Optimization Framework for a Sustained-Release Formulation Design
by Yuchao Qiao, Yijia Wu, Mengchen Han, Hao Ren, Yu Cui, Xuchun Wang, Yiming Lou, Chongqi Hao, Quan Feng and Lixia Qiu
Pharmaceutics 2025, 17(11), 1419; https://doi.org/10.3390/pharmaceutics17111419 - 1 Nov 2025
Viewed by 373
Abstract
Objectives: This study proposes a systematic strategy for optimizing sustained-release formulations using mixture experiments. Methods: Model variables were identified and screened via LASSO regression, Smoothly Clipped Absolute Deviation (SCAD), and Minimax Concave Penalty (MCP), leading to the construction of a quadratic [...] Read more.
Objectives: This study proposes a systematic strategy for optimizing sustained-release formulations using mixture experiments. Methods: Model variables were identified and screened via LASSO regression, Smoothly Clipped Absolute Deviation (SCAD), and Minimax Concave Penalty (MCP), leading to the construction of a quadratic inference function-based objective model. Using this model, three multi-objective optimization algorithms—NSGA-III, MOGWO, and NSWOA—were employed to generate a Pareto-optimal solution set. Solutions were further evaluated through the entropy weight method combined with TOPSIS to reduce subjective bias. Results: The MCP-screened model demonstrated strong fit (AIC = 19.8028, BIC = 45.2951) and suitability for optimization. Among the Pareto-optimal formulations, formulation 45, comprising HPMC K4M (38.42%), HPMC K100LV (13.51%), MgO (6.28%), lactose (17.07%), and anhydrous CaHPO4 (7.52%), exhibited superior performance, achieving cumulative release rates of 22.75%, 64.98%, and 100.23% at 2, 8, and 24 h, respectively. Compared with the original formulation, drug release was significantly improved across all time points. Conclusions: This integrated workflow effectively accounted for component interactions and repeated measurements, providing a robust and scientifically grounded approach for optimizing multi-component sustained-release formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

31 pages, 12067 KB  
Article
Research on Energy Consumption, Thermal Comfort, Economy, and Carbon Emissions of Residential Buildings Based on Transformer+NSGA-III Multi-Objective Optimization Algorithm
by Shurui Fan, Yixian Zhang, Yan Zhao and Yanan Liu
Buildings 2025, 15(21), 3939; https://doi.org/10.3390/buildings15213939 - 1 Nov 2025
Viewed by 284
Abstract
This study proposes a Transformer–NSGA-III multi-objective optimization framework for high-rise residential buildings in Haikou, a coastal city characterized by a hot summer and warm winter climate. The framework addresses four conflicting objectives: Annual Energy Demand (AED), Predicted Percentage of Dissatisfied (PPD), Global Cost [...] Read more.
This study proposes a Transformer–NSGA-III multi-objective optimization framework for high-rise residential buildings in Haikou, a coastal city characterized by a hot summer and warm winter climate. The framework addresses four conflicting objectives: Annual Energy Demand (AED), Predicted Percentage of Dissatisfied (PPD), Global Cost (GC), and Life Cycle Carbon (LCC) emissions. A localized database of 11 design variables was constructed by incorporating envelope parameters and climate data from 79 surveyed buildings. A total of 5000 training samples were generated through EnergyPlus simulations, employing jEPlus and Latin Hypercube Sampling (LHS). A Transformer model was employed as a surrogate predictor, leveraging its self-attention mechanism to capture complex, long-range dependencies and achieving superior predictive accuracy (R2 ≥ 0.998, MAPE ≤ 0.26%) over the benchmark CNN and MLP models. The NSGA-III algorithm subsequently conducted a global optimization of the four-objective space, with the Pareto-optimal solution identified using the TOPSIS multi-criteria decision-making method. The optimization resulted in significant reductions of 28.5% in the AED, 24.1% in the PPD, 20.6% in the GC, and 18.0% in the LCC compared to the base case. The synergistic control of the window solar heat gain coefficient and external sunshade length was identified as the central strategy for simultaneously reducing energy consumption, thermal discomfort, cost, and carbon emissions in this hot and humid climate. The TOPSIS-optimal solution (C = 0.647) effectively balanced low energy use, high thermal comfort, low cost, and low carbon emissions. By integrating the Energy Performance of Buildings Directive (EPBD) Global Cost methodology with Life Cycle Carbon accounting, this study provides a robust framework for dynamic economic–environmental trade-off analyses of ultra-low-energy buildings in humid regions. The work advances the synergy between the NSGA-III and Transformer models for high-dimensional building performance optimization. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

42 pages, 7728 KB  
Article
Low-Carbon Economic Operation of Natural Gas Demand Side Integrating Dynamic Pricing Signals and User Behavior Modeling
by Ning Tian, Bilin Shao, Huibin Zeng, Xue Zhao and Wei Zhao
Entropy 2025, 27(11), 1120; https://doi.org/10.3390/e27111120 - 30 Oct 2025
Viewed by 199
Abstract
Natural gas plays a key role in the low-carbon energy transition due to its clean and efficient characteristics, yet challenges remain in balancing economic efficiency, user behavior, and carbon emission constraints in demand-side scheduling. This study proposes a low-carbon economic operation model for [...] Read more.
Natural gas plays a key role in the low-carbon energy transition due to its clean and efficient characteristics, yet challenges remain in balancing economic efficiency, user behavior, and carbon emission constraints in demand-side scheduling. This study proposes a low-carbon economic operation model for terminal natural gas systems, integrating price elasticity and differentiated user behavior with carbon emission management strategies. To capture diverse demand patterns, dynamic time warping k-medoids clustering is employed, while scheduling optimization is achieved through a multi-objective framework combining NSGA-III, the entropy weight (EW) method, and the VIKOR decision-making approach. Using real-world data from a gas station in Xi’an, simulation results show that the model reduces gas supply costs by 3.45% for residential users and 6.82% for non-residential users, increases user welfare by 4.64% and 88.87%, and decreases carbon emissions by 115.18 kg and 2156.8 kg, respectively. Moreover, non-residential users achieve an additional reduction in carbon trading costs of 183.85 CNY. The findings demonstrate the effectiveness of integrating dynamic price signals, user behavior modeling, and carbon constraints into a unified optimization framework, offering decision support for sustainable and flexible natural gas scheduling. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

28 pages, 1459 KB  
Article
Research on Computing Power Resources-Based Clustering Methods for Edge Computing Terminals
by Jian Wang, Jiali Li, Xianzhi Cao, Chang Lv and Liusong Yang
Appl. Sci. 2025, 15(20), 11285; https://doi.org/10.3390/app152011285 - 21 Oct 2025
Viewed by 368
Abstract
In the “cloud–edge–end” three-tier architecture of edge computing, the cloud, edge layer, and end-device layer collaborate to enable efficient data processing and task allocation. Certain computation-intensive tasks are decomposed into subtasks at the edge layer and assigned to terminal devices for execution. However, [...] Read more.
In the “cloud–edge–end” three-tier architecture of edge computing, the cloud, edge layer, and end-device layer collaborate to enable efficient data processing and task allocation. Certain computation-intensive tasks are decomposed into subtasks at the edge layer and assigned to terminal devices for execution. However, existing research has primarily focused on resource scheduling, paying insufficient attention to the specific requirements of tasks for computing and storage resources, as well as to constructing terminal clusters tailored to the needs of different subtasks.This study proposes a multi-objective optimization-based cluster construction method to address this gap, aiming to form matched clusters for each subtask. First, this study integrates the computing and storage resources of nodes into a unified concept termed the computing power resources of terminal nodes. A computing power metric model is then designed to quantitatively evaluate the heterogeneous resources of terminals, deriving a comprehensive computing power value for each node to assess its capability. Building upon this model, this study introduces an improved NSGA-III (Non-dominated Sorting Genetic Algorithm III) clustering algorithm. This algorithm incorporates simulated annealing and adaptive genetic operations to generate the initial population and employs a differential mutation strategy in place of traditional methods, thereby enhancing optimization efficiency and solution diversity. The experimental results demonstrate that the proposed algorithm consistently outperformed the optimal baseline algorithm across most scenarios, achieving average improvements of 18.07%, 7.82%, 15.25%, and 10% across the four optimization objectives, respectively. A comprehensive comparative analysis against multiple benchmark algorithms further confirms the marked competitiveness of the method in multi-objective optimization. This approach enables more efficient construction of terminal clusters adapted to subtask requirements, thereby validating its efficacy and superior performance. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

34 pages, 4679 KB  
Article
Multi-Objective Optimization of Mobile Battery Energy Storage and Dynamic Feeder Reconfiguration for Enhanced Voltage Profiles in Active Distribution Systems
by Phuwanat Marksan, Krittidet Buayai, Ritthichai Ratchapan, Wutthichai Sa-nga-ngam, Krischonme Bhumkittipich, Kaan Kerdchuen, Ingo Stadler, Supapradit Marsong and Yuttana Kongjeen
Energies 2025, 18(20), 5515; https://doi.org/10.3390/en18205515 - 19 Oct 2025
Viewed by 532
Abstract
Active distribution systems (ADS) are increasingly strained by rising energy demand and the widespread deployment of distributed energy resources (DERs) and electric vehicle charging stations (EVCS), which intensify voltage deviations, power losses, and peak demand fluctuations. This study develops a coordinated optimization framework [...] Read more.
Active distribution systems (ADS) are increasingly strained by rising energy demand and the widespread deployment of distributed energy resources (DERs) and electric vehicle charging stations (EVCS), which intensify voltage deviations, power losses, and peak demand fluctuations. This study develops a coordinated optimization framework for Mobile Battery Energy Storage Systems (MBESS) and Dynamic Feeder Reconfiguration (DFR) to enhance network performance across technical, economic, and environmental dimensions. A Non-dominated Sorting Genetic Algorithm III (NSGA-III) is employed to minimize six objectives the active and reactive power losses, voltage deviation index (VDI), voltage stability index (FVSI), operating cost, and CO2 emissions while explicitly modeling the MBESS transportation constraints such as energy consumption and single-trip mobility within coupled IEEE 33-bus and 33-node transport networks, which provide realistic mobility modeling of energy storage operations. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to select compromise solutions from Pareto fronts. Simulation results across six scenarios show that the coordinated MBESS–DFR operation reduces power losses by 27.8–30.1%, improves the VDI by 40.5–43.2%, and enhances the FVSI by 2.3–2.4%, maintaining all bus voltages within 0.95–1.05 p.u. with minimal cost (0.26–0.27%) and emission variations (0.31–0.71%). The MBESS alone provided limited benefits (5–12%), confirming that coordination is essential for improving efficiency, voltage regulation, and overall system sustainability in renewable-rich distribution networks. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

18 pages, 4521 KB  
Article
Lightweight Design and Research of Electric Towing Winch Based on Kriging-NSGA-III-TOPSIS Multi-Objective Optimization Technology
by Quanliang Liu, Lu Feng, Ya Wang, Ji Lin and Linsen Zhu
Machines 2025, 13(10), 922; https://doi.org/10.3390/machines13100922 - 6 Oct 2025
Viewed by 381
Abstract
To address the challenges of weight redundancy, low material utilization, and excessive performance margins in the design of electric cable-hauling machines, this study proposes a novel multi-objective optimization framework. The framework integrates Latin hypercube experimental design, Kriging surrogate modeling, a Non-dominated Sorting Genetic [...] Read more.
To address the challenges of weight redundancy, low material utilization, and excessive performance margins in the design of electric cable-hauling machines, this study proposes a novel multi-objective optimization framework. The framework integrates Latin hypercube experimental design, Kriging surrogate modeling, a Non-dominated Sorting Genetic Algorithm III (NSGA-III), and a coupled TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) approach. A high-fidelity finite element model based on extreme operating conditions was established to simulate the performance of the electric towing winch. The Kriging model was employed to replace time-consuming finite element calculations, significantly improving computational efficiency. The NSGA-III algorithm was then utilized to search for the Pareto front, identifying a set of optimal solutions that balance multiple design objectives. Finally, the TOPSIS method was applied to select the most preferable solution from the Pareto front. The results demonstrate a 7.32% reduction in the overall mass of the towing winch, a 7.34% increase in the safety factor, and a 4.57% reduction in maximum structural deformation under extreme operating conditions. These findings validate the effectiveness of the proposed Kriging-NSGA-III-TOPSIS strategy for lightweight design of ship deck winch machinery. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

26 pages, 7561 KB  
Article
Multi-Objective Structural Parameter Optimization for Stewart Platform via NSGA-III and Kolmogorov–Arnold Network
by Jie Tao, Yafei Xu, Yongjun Chen, Pin Cheng, Haikun Zhang, Jianping Wang and Huicheng Zhou
Machines 2025, 13(10), 887; https://doi.org/10.3390/machines13100887 - 26 Sep 2025
Viewed by 585
Abstract
The structural parameters of Stewart platforms play a critical role in enhancing dynamic performance, improving motion accuracy, and enabling effective control strategies. However, practical applications face several key limitations, including the metric balancing for optimization, the limited singularity-free workspace, and low computational efficiency. [...] Read more.
The structural parameters of Stewart platforms play a critical role in enhancing dynamic performance, improving motion accuracy, and enabling effective control strategies. However, practical applications face several key limitations, including the metric balancing for optimization, the limited singularity-free workspace, and low computational efficiency. To overcome those shortcomings, this work proposes a multi-objective optimal design of the structural parameters for Stewart platform based on Non-dominated Sorting Genetic Algorithm III (NSGA-III) and Kolmogorov–Arnold Network (KAN). Firstly, under the stroke constraints of the Stewart platform, this work focuses on optimizing the platform’s key structural parameters. This approach enables both the optimization of existing equipment and the design of new devices. Secondly, this work employs KAN to establish a model that characterizes the relationship between the structural parameters and diverse postures within the maximum singularity-free workspace. This approach not only enhances computational efficiency but also ensures high precision. Finally, this study proposes six performance metrics and utilizes NSGA-III to optimize the structural parameters, thereby achieving a trade-off among these diverse objectives. Simulation and experimental results demonstrate that KAN significantly outperforms the Multi-Layer Perceptron (MLP) in predicting workspace postures. Compared with MLP, KAN achieves higher prediction accuracy and lower error rates across both training and test datasets. When comparing NSGA-III with NSGA-II, the proposed approach demonstrates modest improvements in most performance metrics while preserving acceptable trade-offs between the optimization objectives. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

23 pages, 2229 KB  
Article
Optimization of Electric Vehicle Charging Station Location Distribution Based on Activity–Travel Patterns
by Qian Zhang, Guiwu Si and Hongyi Li
ISPRS Int. J. Geo-Inf. 2025, 14(10), 373; https://doi.org/10.3390/ijgi14100373 - 25 Sep 2025
Viewed by 1565
Abstract
With the rapid expansion of the electric vehicle (EV) market, optimizing the distribution of charging stations has attracted increasing attention. Unlike internal combustion engine vehicles, EVs are typically charged at the end of a trip rather than during transit. Therefore, analyzing EV users’ [...] Read more.
With the rapid expansion of the electric vehicle (EV) market, optimizing the distribution of charging stations has attracted increasing attention. Unlike internal combustion engine vehicles, EVs are typically charged at the end of a trip rather than during transit. Therefore, analyzing EV users’ charging preferences based on their activity–travel patterns is essential. This study seeks to improve the operational efficiency and accessibility of EV charging stations in Lanzhou City by optimizing their spatial distribution. To achieve this, a novel multi-objective optimization model integrating NSGA-III and TOPSIS is proposed. The methodology consists of two key steps. First, the NSGA-III algorithm is applied to optimize three objective functions: minimizing construction costs, maximizing user satisfaction, and maximizing user convenience, thereby identifying charging station locations that address diverse needs. Second, the TOPSIS method is employed to rank and evaluate various location solutions, ultimately determining the final sitting strategy. The results show that the 232 locations obtained by the optimization model are reasonably distributed, with good operational efficiency and convenience. Most of them are distributed in urban centers and commercial areas, which is consistent with the usage scenarios of EV users. In addition, this study demonstrates the superiority in determining the distribution of charging station locations of the proposed method. In summary, this study determined the optimal distribution of 232 EV charging stations in Lanzhou City using multi-objective optimization and ranking methods. The results are of great significance for improving the operational efficiency and convenience of charging station location optimization and offer valuable insights for other cities in northwestern China in planning their charging infrastructure. Full article
Show Figures

Figure 1

31 pages, 15519 KB  
Article
Multi-Objective Optimization of Water Resource Allocation with Spatial Equilibrium Considerations: A Case Study of Three Cities in Western Gansu Province
by Xuefang Li, Yucai Wang, Caixia Huang, Fuqiang Li and Guanheng Wu
Sustainability 2025, 17(19), 8582; https://doi.org/10.3390/su17198582 - 24 Sep 2025
Viewed by 597
Abstract
Against the background of increasingly scarce water resources and intensifying water use conflicts, achieving the scientific and optimized allocation of water resources has become crucial to ensuring regional sustainable development. Based on the traditional water resource optimization models that consider social, economic, and [...] Read more.
Against the background of increasingly scarce water resources and intensifying water use conflicts, achieving the scientific and optimized allocation of water resources has become crucial to ensuring regional sustainable development. Based on the traditional water resource optimization models that consider social, economic, and ecological objectives, this study introduces a spatial equilibrium level as a fourth optimization objective, constructing a multi-objective water resource allocation optimization model. The model simultaneously incorporates constraints on water supply, water demand, and decision variable non-negativity, as well as coupling coordination constraints among the water resources, socio-economic, and ecological subsystems within each water use unit. The NSGA-III algorithm is employed to obtain the Pareto front solution set for the four objectives, followed by a comprehensive ranking of the Pareto solutions using an entropy-weighted TOPSIS method. The solution exhibiting the best trade-off among the four objectives is selected as the decision basis for the water allocation scheme. Taking Jiuquan, Jiayuguan, and Zhangye cities in western Gansu Province as the study area, the results indicate that the optimal allocation scheme can guide the cities to shift from “water-deficit usage” toward “water-saving usage,” achieving a reasonable balance between meeting water demand and water conservation requirements. This promotes coordinated development among the water resource, socio-economic, and ecological subsystems within each city as well as among the cities themselves, thereby facilitating sustainable utilization of water resources and sustainable development of socio-economics and the ecological environment. The findings can serve as a reference for water resource allocation strategies in the study region. Full article
Show Figures

Figure 1

44 pages, 5603 KB  
Article
Optimization of Different Metal Casting Processes Using Three Simple and Efficient Advanced Algorithms
by Ravipudi Venkata Rao and Joao Paulo Davim
Metals 2025, 15(9), 1057; https://doi.org/10.3390/met15091057 - 22 Sep 2025
Viewed by 722
Abstract
This paper presents three simple and efficient advanced optimization algorithms, namely the best–worst–random (BWR), best–mean–random (BMR), and best–mean–worst–random (BMWR) algorithms designed to address unconstrained and constrained single- and multi-objective optimization tasks of the metal casting processes. The effectiveness of the algorithms is demonstrated [...] Read more.
This paper presents three simple and efficient advanced optimization algorithms, namely the best–worst–random (BWR), best–mean–random (BMR), and best–mean–worst–random (BMWR) algorithms designed to address unconstrained and constrained single- and multi-objective optimization tasks of the metal casting processes. The effectiveness of the algorithms is demonstrated through real case studies, including (i) optimization of a lost foam casting process for producing a fifth wheel coupling shell from EN-GJS-400-18 ductile iron, (ii) optimization of process parameters of die casting of A360 Al-alloy, (iii) optimization of wear rate in AA7178 alloy reinforced with nano-SiC particles fabricated via the stir-casting process, (iv) two-objectives optimization of a low-pressure casting process using a sand mold for producing A356 engine block, and (v) four-objectives optimization of a squeeze casting process for LM20 material. Results demonstrate that the proposed algorithms consistently achieve faster convergence, superior solution quality, and reduced function evaluations compared to simulation software (ProCAST, CAE, and FEA) and established metaheuristics (ABC, Rao-1, PSO, NSGA-II, and GA). For single-objective problems, BWR, BMR, and BMWR yield nearly identical solutions, whereas in multi-objective tasks, their behaviors diverge, offering well-distributed Pareto fronts and improved convergence. These findings establish BWR, BMR, and BMWR as efficient and robust optimizers, positioning them as promising decision support tools for industrial metal casting. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

15 pages, 3145 KB  
Article
Economic, Environmental, and Safety Multi-Objective Optimization Design for Separation of Tetrahydrofuran/Methanol/Water Mixture
by Mengdie Gao, Qiyu Zhang, Zhehao Jin, Yishan Liu and Yiyang Dai
Separations 2025, 12(9), 255; https://doi.org/10.3390/separations12090255 - 21 Sep 2025
Viewed by 592
Abstract
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF [...] Read more.
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF and MeOH from the wastewater must be recovered. Triple-column extractive distillation (TED), pressure-swing azeotropic distillation (PSAD) and reactive extractive dividing-wall column (REDWC) are introduced to separate this ternary system, and the NSGA-III algorithm is introduced to optimize the processes, taking the total annual cost (TAC), CO2 emissions, and process route index (PRI) as objective functions. The results indicate that in comparison with TED process, TAC of PSAD and REDWC is reduced by 29.92% and 24.25%, respectively, and CO2 emissions decreased by 18.01% and 25.13%, while PRI increased by 150.25% and 100.50%. This study can provide an insight for the design of ternary azeotropic system separation. Full article
(This article belongs to the Special Issue Novel Solvents and Methods in Distillation Process)
Show Figures

Figure 1

55 pages, 29751 KB  
Article
Multi-Objective Combinatorial Optimization for Dynamic Inspection Scheduling and Skill-Based Team Formation in Distributed Solar Energy Infrastructure
by Mazin Alahmadi
Systems 2025, 13(9), 822; https://doi.org/10.3390/systems13090822 - 19 Sep 2025
Viewed by 808
Abstract
Maintaining operational efficiency in distributed solar energy systems requires intelligent coordination of inspection tasks and workforce resources to handle diverse fault conditions. This study presents a bi-level multi-objective optimization framework that addresses two tightly coupled problems: dynamic job scheduling and skill-based team formation. [...] Read more.
Maintaining operational efficiency in distributed solar energy systems requires intelligent coordination of inspection tasks and workforce resources to handle diverse fault conditions. This study presents a bi-level multi-objective optimization framework that addresses two tightly coupled problems: dynamic job scheduling and skill-based team formation. The job scheduling component assigns geographically dispersed inspection tasks to mobile teams while minimizing multiple conflicting objectives, including travel distance, tardiness, and workload imbalance. Concurrently, the team formation component ensures that each team satisfies fault-specific skill requirements by optimizing team cohesion and compactness. To solve the bi-objective team formation problem, we propose HMOO-AOS, a hybrid algorithm integrating six metaheuristic operators under an NSGA-II framework with an Upper Confidence Bound-based Adaptive Operator Selection. Experiments on datasets of up to seven instances demonstrate statistically significant improvements (p<0.05) in solution quality, skill coverage, and computational efficiency compared to NSGA-II, NSGA-III, and MOEA/D variants, with computational complexity OG·N·(M+logN) (time complexity), O(N·L) (space complexity). A cloud-integrated system architecture is also proposed to contextualize the framework within real-world solar inspection operations, supporting real-time data integration, dynamic rescheduling, and mobile workforce coordination. These contributions provide scalable, practical tools for solar operators, maintenance planners, and energy system managers, establishing a robust and adaptive approach to intelligent inspection planning in renewable energy operations. Full article
(This article belongs to the Special Issue Advances in Operations and Production Management Systems)
Show Figures

Figure 1

21 pages, 1791 KB  
Article
Multi-Objective Black-Start Planning for Distribution Networks with Grid-Forming Storage: A Control-Constrained NSGA-III Framework
by Linlin Wu, Yinchi Shao, Yu Gong, Yiming Zhao, Zhengguo Piao and Yuntao Cao
Processes 2025, 13(9), 2875; https://doi.org/10.3390/pr13092875 - 9 Sep 2025
Viewed by 600
Abstract
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of [...] Read more.
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of distributed energy resources and limited system inertia. This paper proposes a novel multi-layered black-start planning framework that explicitly incorporates the dynamic capabilities and operational constraints of grid-forming energy storage systems (GFESs). The approach formulates a multi-objective optimization problem solved via the Non-Dominated Sorting Genetic Algorithm III (NSGA-III), jointly minimizing total restoration time, voltage–frequency deviations, and maximizing early-stage load recovery. A graph-theoretic partitioning module identifies restoration subgrids based on topological cohesion, critical load density, and GFES proximity, enabling localized energization and autonomous island formation. Restoration path planning is embedded as a mixed-integer constraint layer, enforcing synchronization stability, surge current thresholds, voltage drop limits, and dispatch-dependent GFES constraints such as SoC evolution and droop-based frequency support. The model is evaluated on a modified IEEE 123-bus system with five distributed GFES units under multiple blackout scenarios. Simulation results show that the proposed method achieves up to 31% faster restoration and 46% higher voltage compliance compared to MILP and heuristic baselines, while maintaining strict adherence to dynamic safety constraints. The framework yields a diverse Pareto frontier of feasible restoration strategies and provides actionable insights into the coordination of distributed grid-forming resources for decentralized black-start planning. These results demonstrate that control-aware, partition-driven optimization is essential for scalable, safe, and fast restoration in the next generation of resilient power systems. Full article
Show Figures

Figure 1

Back to TopTop