Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Nepal Mw 7.9 earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3446 KB  
Article
Seismic Performance Evaluation of Low-Rise Reinforced Concrete Framed Buildings with Ready-to-Use Guidelines (RUD-NBC 205:2024) in Nepal
by Jhabindra Poudel, Prashidha Khatiwada and Subash Adhikari
CivilEng 2025, 6(3), 50; https://doi.org/10.3390/civileng6030050 - 18 Sep 2025
Viewed by 1628
Abstract
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 [...] Read more.
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 Jajarkot earthquake (ML 6.4) have repeatedly exposed the vulnerability of Nepal’s built environment. In response, the Ready-to-Use Detailing (RUD) guideline (NBC 205:2024) was introduced to provide standardized structural detailing for low-rise reinforced concrete buildings without masonry infill, particularly for use in areas where access to professional engineering services is limited. This study was motivated by the need to critically assess the structural performance of buildings designed according to such rule-of-thumb detailing, which is widely applied through owner–builder practices. Nonlinear pushover analyses were carried out using finite element modelling for typical configurations on soil types C and D, under peak ground accelerations of 0.25 g, 0.30 g, 0.35 g, and 0.40 g. The response spectrum from NBC 105:2020 was adopted to determine performance points. The analysis focused on global response, capacity curves, storey drift, and hinge formation to evaluate structural resilience. The maximum story drift for the linear static analysis is found to be 0.56% and 0.86% for peak ground acceleration of 0.40 g, for both three and four-storied buildings. Also, from non-linear static analysis, it is found that almost all hinges formed in the beams and columns are in the Immediate Occupancy (IO) level. The findings suggest that the RUD guidelines are capable of providing adequate seismic performance for low-rise reinforced concrete buildings, given that the recommended material quality and construction standards are satisfied. Full article
Show Figures

Figure 1

32 pages, 17155 KB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 - 30 Jul 2025
Viewed by 896
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

27 pages, 27633 KB  
Article
Tracking the Seismic Deformation of Himalayan Glaciers Using Synthetic Aperture Radar Interferometry
by Sandeep Kumar Mondal, Rishikesh Bharti and Kristy F. Tiampo
Remote Sens. 2025, 17(5), 911; https://doi.org/10.3390/rs17050911 - 5 Mar 2025
Cited by 2 | Viewed by 2083
Abstract
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of [...] Read more.
The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of the high-altitude Himalayan region. The impact of earthquakes can be easily studied in the plains and plateaus with the help of well-distributed seismogram networks and these regions’ accessibility is helpful for field- and lab-based studies. However, earthquakes triggered close to high-altitude Himalayan glaciers are tough to investigate for the impact over glaciers and glacial deposits. In this study, we attempt to understand the impact of earthquakes on and around Himalayan glaciers in terms of vertical displacement and coherence change using space-borne synthetic aperture radar (SAR). Eight earthquake events of various magnitudes and hypocenter depths occurring in the vicinity of Himalayan glacial bodies were studied using C-band Sentinel1-A/B SAR data. Differential interferometric SAR (DInSAR) analysis is applied to capture deformation of the glacial surface potentially related to earthquake occurrence. Glacial displacement varies from −38.9 mm to −5.4 mm for the 2020 Tibet earthquake (Mw 5.7) and the 2021 Nepal earthquake (Mw 4.1). However, small glacial and ground patches processed separately for vertical displacements reveal that the glacial mass shows much greater seismic displacement than the ground surface. This indicates the possibility of the presence of potential site-specific seismicity amplification properties within glacial bodies. A reduction in co-seismic coherence around the glaciers is observed in some cases, indicative of possible changes in the glacial moraine deposits and/or vegetation cover. The effect of two different seismic events (the 2020 and 2021 Nepal earthquakes) with different hypocenter depths but with the same magnitude at almost equal distances from the glaciers is assessed; a shallow earthquake is observed to result in a larger impact on glacial bodies in terms of vertical displacement. Earthquakes may induce glacial hazards such as glacial surging, ice avalanches, and the failure of moraine-/ice-dammed glacial lakes. This research may be able to play a possible role in identifying areas at risk and provide valuable insights for the planning and implementation of measures for disaster risk reduction. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

17 pages, 9929 KB  
Case Report
An Analytical Study on the Damage to School Buildings by the 2015 Nepal Earthquake and Damage Level-Based Reconstruction Experience
by Youb Raj Paudyal and Netra Prakash Bhandary
Buildings 2024, 14(2), 451; https://doi.org/10.3390/buildings14020451 - 6 Feb 2024
Cited by 2 | Viewed by 4374
Abstract
The 2015 Nepal Earthquake (Mw7.8) affected more than 9000 schools in the country. Damage distribution in the 14 most-affected administrative districts shows that the construction practices were an important determent for the level of damage extended. The use of improper construction materials, lack [...] Read more.
The 2015 Nepal Earthquake (Mw7.8) affected more than 9000 schools in the country. Damage distribution in the 14 most-affected administrative districts shows that the construction practices were an important determent for the level of damage extended. The use of improper construction materials, lack of construction supervision, and non-compliance with the existing building codes during design and construction probably contributed to severe damage to most of the school buildings. Based on the damage analysis data and experience of the rebuilding process after the 2015 Nepal Earthquake, this paper highlights the steps to be considered during a rebuilding plan for school buildings after an earthquake disaster. Preliminary damage assessment results show that in the most-affected districts, about 86% of schools (locations) were affected by the earthquake and about one million students were out of their schools for a long time. The damage survey data indicate that about 30% of classrooms collapsed, about 13% of classrooms sustained major damage, and about 17% of classrooms sustained minor damage within the most-affected 14 districts. This damage report is largely based on the secondary data provided by the concerned government authorities. Such evidence of loss and damage in earthquake disasters provides an opportunity to learn lessons for future preparedness and to encounter disaster challenges. This work shares an experience on the rebuilding process of damaged schools and classrooms. It is expected that the experience reported in this paper will help in better planning of the seismic safety of school buildings in Nepal as well as in other similar seismically active regions. Most papers related to the 2015 Nepal Earthquake focus on overall building damage, but this paper addresses the issues of school buildings. As a case report, this paper probably lacks scientific originality, but the presentation of the damage data and the rebuilding process are the original work of the authors. Full article
Show Figures

Figure 1

7 pages, 4624 KB  
Proceeding Paper
Analysis of Seismo-Ionospheric Irregularities Using the Available PRNs vTEC from the Closest Epicentral cGPS Stations for Large Earthquakes
by Karan Nayak, Charbeth López Urias, Rosendo Romero Andrade, Gopal Sharma and Manuel Edwiges Trejo Soto
Environ. Sci. Proc. 2023, 27(1), 24; https://doi.org/10.3390/ecas2023-15144 - 17 Jan 2024
Cited by 2 | Viewed by 1537
Abstract
The occurrence of earthquakes, which can strike suddenly without any warning, has always posed a potential threat to humanity. However, researchers worldwide have been diligently studying the mechanisms and patterns of these events in order to develop warning systems and improve detection methods. [...] Read more.
The occurrence of earthquakes, which can strike suddenly without any warning, has always posed a potential threat to humanity. However, researchers worldwide have been diligently studying the mechanisms and patterns of these events in order to develop warning systems and improve detection methods. One of the most reliable indicators for predicting large earthquakes has been the examination of electron availability in the ionosphere. This study focuses on analyzing the behavior of the Total Electron Content (TEC) in the ionosphere during the 30-day period leading up to the three most devastating earthquakes of the past decade. Specifically, the data were examined from the cGPS stations closest to the epicenters: MERS for the Turkey earthquake with 7.8 Mw on 6 February 2023, CHLM for the Nepal earthquake with 7.8 Mw on 25 April 2015, and MIZU for the Japan earthquake with 9.1 Mw on 11 March 2011. Notable positive and negative anomalies were observed for each earthquake, and the vertical Total Electron Content (vTEC) for each PRN (pseudo-random number) was plotted to determine the specific time of the TEC anomaly. The spatial distribution of vTEC for the anomalous specific time revealed that the anomalies were in close proximity to the earthquake epicenters, particularly within denser fault zones. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

28 pages, 14166 KB  
Article
Reconnaissance of the Effects of the MW5.7 (ML6.4) Jajarkot Nepal Earthquake of 3 November 2023, Post-Earthquake Responses, and Associated Lessons to Be Learned
by Mandip Subedi, Rajan KC, Keshab Sharma, Jibendra Misra and Apil KC
Geosciences 2024, 14(1), 20; https://doi.org/10.3390/geosciences14010020 - 7 Jan 2024
Cited by 10 | Viewed by 9417
Abstract
On 3 November 2023, a moment magnitude (MW) 5.7 (Local Magnitude, ML6.4) earthquake struck the western region of Nepal, one of the most powerful seismic events since 1505 in the region. Even though the earthquake was of moderate [...] Read more.
On 3 November 2023, a moment magnitude (MW) 5.7 (Local Magnitude, ML6.4) earthquake struck the western region of Nepal, one of the most powerful seismic events since 1505 in the region. Even though the earthquake was of moderate magnitude, it caused significant damage to several masonry buildings and caused slope failures in some regions. The field reconnaissance carried out on 6–9 November by the study team, following the earthquake, conducted the first-hand preliminary damage assessment in the three most affected districts—Jajarkot; West Rukum; and Salyan. This study covers the observed typical structural failures and geotechnical case studies from the field study. To have a robust background understanding, this paper examines the seismotectonic setting and regional seismic activity in the region. The observations of earthquake damage suggest that most of the affected buildings were made of stone or brick masonry without seismic consideration, while most of the reinforced concrete (RC) buildings remained intact. Case histories of damaged buildings, the patterns, and the failure mechanisms are discussed briefly in this paper. Significant damage to Khalanga Durbar, a historical monument in Jajarkot, was also observed. Medium- to large-scale landslides and rockfalls were recorded along the highway. The motorable bridge in the Bheri River suffered from broken bolts, rotational movement at the expansion joint, and damage to the stoppers. The damage observations suggest that, despite the existence of building codes, their non-implementation could have contributed to the heavy impact in the region. This study highlights that the local population faces a potential threat of subsequent disasters arising from earthquakes and earthquake-induced landslides. This underscores the necessity for proactive measures in preparedness for future disasters. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

38 pages, 12120 KB  
Article
New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults
by Saroj Maharjan, Antoine Poujol, Christophe Martin, Gabriele Ameri, David Baumont, Kiana Hashemi, Yacine Benjelloun and Hussein Shible
Geosciences 2023, 13(8), 220; https://doi.org/10.3390/geosciences13080220 - 25 Jul 2023
Cited by 5 | Viewed by 7828
Abstract
Nepal is one of the most seismically active regions in the world, as highlighted by the recent devastating 2015, Mw~7.8 Gorkha earthquake, and a robust assessment of seismic hazard is paramount for the design of earthquake-resistant structures. In this study, we [...] Read more.
Nepal is one of the most seismically active regions in the world, as highlighted by the recent devastating 2015, Mw~7.8 Gorkha earthquake, and a robust assessment of seismic hazard is paramount for the design of earthquake-resistant structures. In this study, we present a new probabilistic seismic hazard assessment (PSHA) for Nepal. We considered data and findings from recent scientific publications, which allowed us to develop a unified magnitude homogenized seismicity catalog and propose alternative seismic source characterization (SSC) models including up-to-date parameters of major thrust faults like main frontal thrust (MFT) and main boundary thrust (MBT), while also considering existing SSC models and various seismic hazard modeling strategies within a logic tree framework. The sensitivity analyses show the seismic hazard levels are generally higher for SSC models integrating the major thrust faults, followed by homogenous volume sources and smoothed seismicity approach. The seismic hazard maps covering the entirety of Nepal are presented as well as the uniform hazard spectra (UHS) for five selected locations (Kathmandu, Pokhara, Biratnagar, Nepalganj, and Dipayal) at return periods of 475- and 2475-years considering Vs,30 = 760 m/s. The results obtained are generally consistent with most recent studies. However, a notable variability in seismic hazard levels and several discrepancies with respect to the Nepal Building Building Code NBC105: 2020 and global hazard model, GEM are noted, and possible causes are discussed. Full article
(This article belongs to the Special Issue Seismic Hazard Assessment and Earthquake Risk Mitigation)
Show Figures

Figure 1

13 pages, 1553 KB  
Article
WASH and Health in Sindhupalchowk District of Nepal after the Gorkha Earthquake
by Salina Shrestha, Rabin Malla and Futaba Kazama
Societies 2022, 12(3), 91; https://doi.org/10.3390/soc12030091 - 9 Jun 2022
Cited by 4 | Viewed by 4140
Abstract
An earthquake of magnitude 7.8 MW and 6.8 MW struck Nepal on 25 April and 12 May, 2015, respectively, which caused massive damage. In such crises, understanding the water, sanitation, and hygiene (WASH) situation is of paramount importance. Therefore, we aimed [...] Read more.
An earthquake of magnitude 7.8 MW and 6.8 MW struck Nepal on 25 April and 12 May, 2015, respectively, which caused massive damage. In such crises, understanding the water, sanitation, and hygiene (WASH) situation is of paramount importance. Therefore, we aimed to assess the WASH situation and its impact on health, particularly in the Sindhupalchowk district. A questionnaire survey and microbial analysis of water samples were conducted. Descriptive statistics and parametric and non-parametric statistical tests were employed. The results revealed that 97.1% of water samples from the source during the pre-monsoon season and 98.5% during the monsoon season had fecal contamination. Similarly, 92.8% of water samples during the pre-monsoon season and 96.7% during the monsoon season at point of use (PoU) had fecal contamination. Furthermore, water consumption was comparatively less during the pre-monsoon season. The increase in water consumption improved hygiene behavior and lowered the prevalence of waterborne diseases. Similarly, less water consumption affected water handling behavior; for example, the cleaning interval of storage vessels was less frequent. An increase in cleaning interval resulted in fecal contamination of water at PoU. The findings of this study can be useful in the review of existing WASH policy and plans and integration with the disaster management plan for disaster risk reduction. Full article
(This article belongs to the Special Issue Social Perspective and Water Resources)
Show Figures

Figure 1

17 pages, 78818 KB  
Article
InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust
by Lei Zhao, Chunyan Qu, Dezheng Zhao, Xinjian Shan, Han Chen and Lian Liu
Remote Sens. 2022, 14(2), 306; https://doi.org/10.3390/rs14020306 - 10 Jan 2022
Cited by 3 | Viewed by 2736
Abstract
We use ALOS-2 and Sentinel-1 data spanning 2015–2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area [...] Read more.
We use ALOS-2 and Sentinel-1 data spanning 2015–2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area of the co-seismic deformation field, with a maximum uplift of ~80 mm within 4.5 yr after the mainshock. While in the southern coseismic uplift area, the direction of the post-seismic deformation is generally opposite to the co-seismic deformation. Additionally, two notable deformation areas are located in the region around 29° N, and near the MFT, respectively. Sentinel-1 observations reveal post-seismic uplift deformation on the north side of the co-seismic deformation field with an average rate of ~20 mm/yr in line-of-stght. The kinematic afterslip constrained by InSAR data shows that the frictional slip is distributed in both updip and downdip areas. The maximum cumulative afterslip is 0.35 m in downdip areas, and 0.2 m in the updip areas, constrained by the ALOS measurements. The stress-driven afterslip model shows that the afterslip is distributed in the downdip area with a maximum slip of 0.3 m during the first year after the earthquake. Within the 4.5 yr after the mainshock, the estimated moment released by afterslip is ~1.5174 × 1020 Nm,about 21.2% of that released by the main earthquake. Full article
Show Figures

Figure 1

19 pages, 7176 KB  
Article
Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal
by Prabin Acharya, Keshab Sharma and Indra Prasad Acharya
GeoHazards 2021, 2(3), 153-171; https://doi.org/10.3390/geohazards2030009 - 15 Jul 2021
Cited by 2 | Viewed by 7876
Abstract
Kathmandu Valley lies in an active tectonic zone, meaning that earthquakes are common in the region. The most recent was the Gorkha Nepal earthquake, measuring 7.8 Mw. Past earthquakes caused soil liquefaction in the valley with severe damages and destruction of [...] Read more.
Kathmandu Valley lies in an active tectonic zone, meaning that earthquakes are common in the region. The most recent was the Gorkha Nepal earthquake, measuring 7.8 Mw. Past earthquakes caused soil liquefaction in the valley with severe damages and destruction of existing critical infrastructures. As for such infrastructures, the road network, health facilities, schools and airports are considered. This paper presents a liquefaction susceptibility map. This map was obtained by computing the liquefaction potential index (LPI) for several boreholes with SPT measurements and clustering the areas with similar values of LPI. Moreover, the locations of existing critical infrastructures were reported on this risk map. Therefore, we noted that 42% of the road network and 16% of the airport area are in zones of very high liquefaction susceptibility, while 60%, 54%, and 64% of health facilities, schools and colleges are in very high liquefaction zones, respectively. This indicates that most of the critical facilities in the valley are at serious risk of liquefaction during a major earthquake and therefore should be retrofitted for their proper functioning during such disasters. Full article
Show Figures

Figure 1

17 pages, 8912 KB  
Article
InSAR 3-D Coseismic Displacement Field of the 2015 Mw 7.8 Nepal Earthquake: Insights into Complex Fault Kinematics during the Event
by Chunyan Qu, Xin Qiao, Xinjian Shan, Dezheng Zhao, Lei Zhao, Wenyu Gong and Yanchuan Li
Remote Sens. 2020, 12(23), 3982; https://doi.org/10.3390/rs12233982 - 5 Dec 2020
Cited by 10 | Viewed by 4071
Abstract
The 2015 Mw 7.8 Gorkha, Nepal, earthquake occurred in the central Himalayan collisional orogenic belt, which demonstrated complex fault kinematics and significant surface deformation. The coseismic deformation has been well documented by previous studies using Global Positioning System (GPS) and Interferometric Synthetic Aperture [...] Read more.
The 2015 Mw 7.8 Gorkha, Nepal, earthquake occurred in the central Himalayan collisional orogenic belt, which demonstrated complex fault kinematics and significant surface deformation. The coseismic deformation has been well documented by previous studies using Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data. However, due to some limitations of spatially sparse GPS stations and InSAR only-one-dimensional observation in the line-of-sight (LOS) direction, the complete distribution and detailed spatial variation of the three-dimensional surface deformation field are still not fully understood. In this study, we reconstructed the three-dimensional coseismic deformation fields using multi-view InSAR observations and investigated the refined surface deformation characteristics during this event. We firstly obtained four ascending and descending InSAR coseismic deformation maps from both Sentinel-1A/B and ALOS-2 data. Secondly, we obtained the synthetic north-south deformation field from our best-fitting slip distribution inversions. Finally, we calculated three-dimensional deformation fields, which were consistent with coseismic GPS displacements but with higher resolution. We found that the surface deformation is dominated by horizontal southward motion and vertical uplift and subsidence, with minor east-west deformation. In the north-south direction, the whole deformation area reaches at least 150 × 150 km with a maximum displacement of ~1.5 m. In the vertical direction, two areas, including uplift in the south and subsidence in the north, are mapped with a peak displacement of 1.5 and −1.0 m, respectively. East-west deformation presented a four-quadrant distribution with a maximum displacement of ~0.6 m. Complex thrusting movement occurred on the seismogenic fault; overall, there was southward push motion and wave-shaped fold motion. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

23 pages, 8103 KB  
Article
Exploring Changes in Land Surface Temperature Possibly Associated with Earthquake: Case of the April 2015 Nepal Mw 7.9 Earthquake
by Shunyun Chen, Peixun Liu, Tao Feng, Dong Wang, Zhonghu Jiao, Lichun Chen, Zhengxuan Xu and Guangze Zhang
Entropy 2020, 22(4), 377; https://doi.org/10.3390/e22040377 - 26 Mar 2020
Cited by 25 | Viewed by 3762
Abstract
Satellite thermal infrared remote sensing has received worldwide attention in the exploration for earthquake precursors; however, this method faces great controversy. Obtaining repeatable phenomena related to earthquakes is helpful to reduce this controversy. In this paper, a total of 15 or 17 years [...] Read more.
Satellite thermal infrared remote sensing has received worldwide attention in the exploration for earthquake precursors; however, this method faces great controversy. Obtaining repeatable phenomena related to earthquakes is helpful to reduce this controversy. In this paper, a total of 15 or 17 years of Moderate-resolution Imaging Spectroradiometer (MODIS)/Aqua and MODIS/Terra satellite remote sensing land surface temperature (LST) products is selected to analyze the temperature changes before and after the Mw 7.9 earthquake in Nepal on 25 April 2015 and to explore possible thermal information associated with this earthquake. Major findings are given as follows: (1) from the time course, the temperature slowly cooled before the earthquake, reached a minimum at the time of the earthquake, and returned to normal after the earthquake. Since these changes were initiated before the earthquake, they may even have been precursors to the Nepal earthquake. (2) From the space distribution, the cooling areas correspond to the seismogenic structure during the earthquake. These cooling areas are distributed along the Himalayas and are approximately 1300 km long. The widths of the East and West sides are slightly different, with an average temperature decrease of 5.6 °C. For these cooling areas, the Western section is approximately 90 km wide and 500 km long; the East side is approximately 190 km wide and 800 km long. The Western side of the cooling strips appeared before the earthquake. In short, these kinds of spatial and temporal changes are tectonically related to the earthquake and may have been caused by the tectonic activity associated with the Nepal earthquake. This process began before the earthquake and therefore might even be potentially premonitory information associated with the Nepal earthquake. Full article
Show Figures

Figure 1

12 pages, 15419 KB  
Article
The Influence of Surface Topography on the Weak Ground Shaking in Kathmandu Valley during the 2015 Gorkha Earthquake, Nepal
by Mark van der Meijde, Md Ashrafuzzaman, Norman Kerle, Saad Khan and Harald van der Werff
Sensors 2020, 20(3), 678; https://doi.org/10.3390/s20030678 - 26 Jan 2020
Cited by 6 | Viewed by 13040
Abstract
It remains elusive why there was only weak and limited ground shaking in Kathmandu valley during the 25 April 2015 Mw 7.8 Gorkha, Nepal, earthquake. Our spectral element numerical simulations show that, during this earthquake, surface topography restricted the propagation of seismic energy [...] Read more.
It remains elusive why there was only weak and limited ground shaking in Kathmandu valley during the 25 April 2015 Mw 7.8 Gorkha, Nepal, earthquake. Our spectral element numerical simulations show that, during this earthquake, surface topography restricted the propagation of seismic energy into the valley. The mountains diverted the incoming seismic wave mostly to the eastern and western margins of the valley. As a result, we find de-amplification of peak ground displacement in most of the valley interior. Modeling of alternative earthquake scenarios of the same magnitude occurring at different locations shows that these will affect the Kathmandu valley much more strongly, up to 2–3 times more, than the 2015 Gorkha earthquake did. This indicates that surface topography contributed to the reduced seismic shaking for this specific earthquake and lessened the earthquake impact within the valley. Full article
Show Figures

Figure 1

20 pages, 3598 KB  
Article
Global Earthquake Response with Imaging Geodesy: Recent Examples from the USGS NEIC
by William D. Barnhart, Gavin P. Hayes and David J. Wald
Remote Sens. 2019, 11(11), 1357; https://doi.org/10.3390/rs11111357 - 6 Jun 2019
Cited by 32 | Viewed by 10468
Abstract
The U.S. Geological Survey National Earthquake Information Center leads real-time efforts to provide rapid and accurate assessments of the impacts of global earthquakes, including estimates of ground shaking, ground failure, and the resulting human impacts. These efforts primarily rely on analysis of the [...] Read more.
The U.S. Geological Survey National Earthquake Information Center leads real-time efforts to provide rapid and accurate assessments of the impacts of global earthquakes, including estimates of ground shaking, ground failure, and the resulting human impacts. These efforts primarily rely on analysis of the seismic wavefield to characterize the source of the earthquake, which in turn informs a suite of disaster response products such as ShakeMap and PAGER. In recent years, the proliferation of rapidly acquired and openly available in-situ and remotely sensed geodetic observations has opened new avenues for responding to earthquakes around the world in the days following significant events. Geodetic observations, particularly from interferometric synthetic aperture radar (InSAR) and satellite optical imagery, provide a means to robustly constrain the dimensions and spatial complexity of earthquakes beyond what is typically possible with seismic observations alone. Here, we document recent cases where geodetic observations contributed important information to earthquake response efforts—from informing and validating seismically-derived source models to independently constraining earthquake impact products—and the conditions under which geodetic observations improve earthquake response products. We use examples from the 2013 Mw7.7 Baluchistan, Pakistan, 2014 Mw6.0 Napa, California, 2015 Mw7.8 Gorkha, Nepal, and 2018 Mw7.5 Palu, Indonesia earthquakes to highlight the varying ways geodetic observations have contributed to earthquake response efforts at the NEIC. We additionally provide a synopsis of the workflows implemented for geodetic earthquake response. As remote sensing geodetic observations become increasingly available and the frequency of satellite acquisitions continues to increase, operational earthquake geodetic imaging stands to make critical contributions to natural disaster response efforts around the world. Full article
(This article belongs to the Special Issue SAR for Natural Hazard )
Show Figures

Graphical abstract

11 pages, 10282 KB  
Article
Seismic Performance of High-Rise Condominium Building during the 2015 Gorkha Earthquake Sequence
by Suraj Malla, Sudip Karanjit, Purushottam Dangol and Dipendra Gautam
Buildings 2019, 9(2), 36; https://doi.org/10.3390/buildings9020036 - 30 Jan 2019
Cited by 12 | Viewed by 7786
Abstract
On 25 April 2015, a strong earthquake of magnitude 7.8 struck central Nepal including the capital city, Kathmandu. Several powerful aftershocks of magnitude 6.7, 6.9 and 7.3 together with hundreds of aftershocks of local magnitude greater than 4 hit the same area until [...] Read more.
On 25 April 2015, a strong earthquake of magnitude 7.8 struck central Nepal including the capital city, Kathmandu. Several powerful aftershocks of magnitude 6.7, 6.9 and 7.3 together with hundreds of aftershocks of local magnitude greater than 4 hit the same area until May 2015. This earthquake sequence resulted in considerable damage to the reinforced concrete buildings apart from brick and stone masonry constructions. High-rise buildings in Nepal are mainly confined in Kathmandu valley and their performance was found to be in the life safety to collapse prevention level during the Gorkha earthquake sequence. In this paper, seismic performance assessment of a reinforced concrete apartment building with brick infill masonry walls that sustained life safety performance level is presented. Rapid visual assessment performed after the 12 May aftershock (MW 7.3) highlighted the need for detailed assessment, thus, we carried out nonlinear time history analysis using the recorded accelerograms. The building was first simulated for the recorded acceleration time history (PGA = 0.16 g) and the PGA was scaled up to 0.36 g to assess the behaviour of building in the case of the maximum considered earthquake occurrence. The sum of results and observations highlighted that the building sustained minor damage due to low PGA occurrence during the Gorkha earthquake and considerable damage would have occurred in the case of 0.36 g PGA. Full article
Show Figures

Figure 1

Back to TopTop