Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = PAC1 receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 735 KB  
Review
Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy
by Dora Reglodi, Andrea Tamas, Inez Bosnyak, Tamas Atlasz, Edina Szabo, Lina Li, Gabriella Horvath, Balazs Opper, Peter Kiss, Liliana Lucas, Grazia Maugeri, Agata Grazia D’Amico, Velia D’Agata, Eszter Fabian, Gyongyver Reman and Alexandra Vaczy
Int. J. Mol. Sci. 2025, 26(19), 9650; https://doi.org/10.3390/ijms26199650 - 3 Oct 2025
Viewed by 638
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, [...] Read more.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, anti-apoptotic and antioxidant pathways. The aim of the present review is to summarize data on the protective effects of PACAP in the three major complications of diabetes, retinopathy, nephropathy and neuropathy, as well as some other complications. In type 1 and type 2 diabetic retinopathy models and in glucose-exposed cells of the eye, PACAP counteracted the degeneration of retinal layers and inhibited apoptosis and factors leading to abnormal vessel growth. In models of nephropathy, kidney morphology was better retained after PACAP administration, with decreased apoptosis and fibrosis. In diabetic neuropathy, PACAP protected against axonal–myelin lesions and less activation in pain processing centers. This neuropeptide has several other beneficial effects in diabetes-induced complications like altered vascular response, cognitive deficits and atherosclerosis. The promising therapeutic effects of PACAP in several pathological conditions have encouraged researchers to design PACAP-related drugs and to develop ways to enhance tissue delivery. These intentions are expected to result in overcoming the hurdles preventing PACAP from being introduced into therapeutic treatments, including diabetes-related conditions. Full article
Show Figures

Figure 1

31 pages, 2915 KB  
Review
A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds
by Min Tang, Wanze Zhang, Yanjie Tian, Jianjun Qiao, Xiaobing Li, Weiguo Li and Qinggele Caiyin
Molecules 2025, 30(19), 3931; https://doi.org/10.3390/molecules30193931 - 30 Sep 2025
Viewed by 1020
Abstract
Prenylated aromatic compounds (PACs) are widely distributed in nature and have important applications in medicine, cosmetics, and food due to their antioxidant, anticancer, and anti-inflammatory activities as well as role in the prevention of neurological diseases. Traditional methods of PAC production such as [...] Read more.
Prenylated aromatic compounds (PACs) are widely distributed in nature and have important applications in medicine, cosmetics, and food due to their antioxidant, anticancer, and anti-inflammatory activities as well as role in the prevention of neurological diseases. Traditional methods of PAC production such as plant extraction and chemical synthesis remain constrained by the low content of these compounds in plants and the complexity of the chemical processes. PACs are synthesized from aromatic compound receptors and prenyl side chain donors, which are in turn synthesized via the shikimate pathway and 2-C-methyl-D-erythritol-4-phosphate/mevalonic acid pathways, respectively. Increasing exploration and research on prenyltransferases (PTs), the key enzymes involved in PAC biosynthesis, have facilitated the emergence of microbial synthesis of PACs as a promising alternative to industrial production. The microbial biosynthesis of PACs is summarized herein, mainly from the perspective of screening and modification of the key enzymes PTs, selection of suitable host systems, and engineering the modification of microbial cell factories to enhance the yields of PACs. The future prospects and challenges of PAC biosynthesis are also discussed. Full article
Show Figures

Graphical abstract

24 pages, 5090 KB  
Article
PAC1 Receptor Knockout Mice Reveal Critical Links Between ER Stress, Myelin Homeostasis, and Neurodegeneration
by Minduli Withana, Laura Bradfield, Margo I. Jansen, Giuseppe Musumeci, James A. Waschek and Alessandro Castorina
Int. J. Mol. Sci. 2025, 26(17), 8668; https://doi.org/10.3390/ijms26178668 - 5 Sep 2025
Viewed by 1262
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) plays a pivotal role in central nervous system development and homeostasis. Comparisons of PAC1 knockout (PAC1−/−), heterozygous (PAC1+/−) and wild-type (PAC1+/+) mice demonstrate that PAC1 deficiency severely impairs pre-weaning [...] Read more.
The pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) plays a pivotal role in central nervous system development and homeostasis. Comparisons of PAC1 knockout (PAC1−/−), heterozygous (PAC1+/−) and wild-type (PAC1+/+) mice demonstrate that PAC1 deficiency severely impairs pre-weaning survival and results in marked developmental deficits, including reduced postnatal weight and altered locomotor behavior. PAC1−/− mice exhibited hyperlocomotion, reduced anxiety-like behavior, and transient deficits in motor coordination. Gene expression analyses revealed widespread dysregulation of oligodendrocyte-associated markers, with significant myelin reduction and decreased mature oligodendrocyte density in the corpus callosum. ER stress was evidenced in both white matter and motor cortex, as indicated by altered expression of UPR-related genes and increased phosphorylated (p)IRE1+ neurons. Retinal morphology was compromised in PAC1−/− animals, with reduced overall retinal and ganglion cell layer thickness. Notably, no gross morphological or molecular abnormalities were detected in the spinal cord regarding myelin content or MBP expression; however, synaptic marker expression was selectively reduced in the ventral horn of PAC1-deficient mice. Together, these findings highlight a critical role for PAC1 in oligodendrocyte maturation, retinal development, and synaptogenesis, providing new insights with relevance in multiple sclerosis and other neurodevelopmental and neurodegenerative conditions. Full article
Show Figures

Figure 1

20 pages, 4054 KB  
Article
Genomic Insights into the Molecular Basis of Broad Host Adaptability of the Entomopathogenic Fungus Conidiobolus coronatus (Entomophthoromycotina)
by Fan Bai, Tian Yang, Lvhao Zhang, Jiaqi Yang, Xinyu Chen and Xiang Zhou
J. Fungi 2025, 11(8), 600; https://doi.org/10.3390/jof11080600 - 19 Aug 2025
Viewed by 867
Abstract
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide [...] Read more.
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide host adaptability. The newly assembled 44.21 Mb genome exhibits high completeness (BUSCO score: 93.45%) and encodes 11,128 protein-coding genes, with 23.1% predicted to mediate pathogen–host interactions. Comparative genomics with the aphid-obligate pathogen C. obscurus revealed significant expansions in gene families associated with host adaptation mechanisms, including host recognition, transcriptional regulation, degradation of host components, detoxification, and immune evasion. Functional annotation highlighted enrichment in cellular component organization and energy metabolism. Pfam annotation identified one hundred twenty-five seven-transmembrane receptors (putative GPCRs), sixty-seven fungus-specific transcription factors, three hundred sixty-one peptidases (one hundred ninety-eight serine proteases and one hundred three metalloproteases), one hundred twenty-seven cytochrome P450 monooxygenases (P450s), thirty-five cysteine-rich secretory proteins, and fifty-five tyrosinases. Additionally, four hundred thirty carbohydrate-active enzymes (CAZymes) across six major modules were characterized. Untargeted metabolomics detected 22 highly expressed terpenoids, consistent with terpenoid biosynthesis gene clusters in the genome. Collectively, these expansions underpin the broad host range of C. coronatus by enabling cross-host signal decoding and gene expression reprogramming, breaching diverse host physicochemical barriers, and expanding its chemical ecological niche. This study provides genomic insights into broad host adaptability in entomopathogenic fungi, facilitating further understanding of pathogen–host interactions. Full article
(This article belongs to the Special Issue New Perspectives on Insect-Associated Fungi)
Show Figures

Figure 1

31 pages, 3024 KB  
Review
Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
by Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama and Longzhu Cui
Molecules 2025, 30(15), 3132; https://doi.org/10.3390/molecules30153132 - 25 Jul 2025
Cited by 1 | Viewed by 3193
Abstract
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review [...] Read more.
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review outlines the current landscape of synthetic and functional engineering of phages, encompassing both in-vivo and in-vitro strategies. We describe in-vivo approaches such as phage recombineering systems, CRISPR-Cas-assisted editing, and bacterial retron-based methods, as well as synthetic assembly platforms including yeast-based artificial chromosomes, Gibson, Golden Gate, and iPac assemblies. In addition, we explore in-vitro rebooting using TXTL (transcription–translation) systems, which offer a flexible alternative to cell-based rebooting but are less effective for large genomes or structurally complex phages. Special focus is given to the design of customized phages for targeted applications, including host range expansion via receptor-binding protein modifications, delivery of antimicrobial proteins or CRISPR payloads, and the construction of biocontained, non-replicative capsid systems for safe clinical use. Through illustrative examples, we highlight how these technologies enable the transformation of phages into programmable bactericidal agents, precision diagnostic tools, and drug delivery vehicles. Together, these advances establish a powerful foundation for next-generation antimicrobial platforms and synthetic microbiology. Full article
Show Figures

Figure 1

22 pages, 7146 KB  
Article
On the Pleiotropic Actions of Glucagon-like Peptide-1 in Its Regulation of Homeostatic and Hedonic Feeding
by Sarah Sayers and Ed Wagner
Int. J. Mol. Sci. 2025, 26(8), 3897; https://doi.org/10.3390/ijms26083897 - 20 Apr 2025
Cited by 1 | Viewed by 879
Abstract
We examined the neuroanatomical substrates and signaling mechanisms underlying the suppressive effect of GLP1 on homeostatic and hedonic feeding. Electrophysiological and behavioral studies were conducted in agouti-related peptide (AgRP)-cre and tyrosine hydroxylase (TH)-cre mice, and AgRP-cre/pituitary adenylyl cyclase-activating polypeptide (PACAP) type I receptor [...] Read more.
We examined the neuroanatomical substrates and signaling mechanisms underlying the suppressive effect of GLP1 on homeostatic and hedonic feeding. Electrophysiological and behavioral studies were conducted in agouti-related peptide (AgRP)-cre and tyrosine hydroxylase (TH)-cre mice, and AgRP-cre/pituitary adenylyl cyclase-activating polypeptide (PACAP) type I receptor (PAC1R)fl/fl animals. GLP1 (30 pmol) delivered directly into the arcuate nucleus (ARC) decreased homeostatic feeding and diminished the rate of consumption. This anorexigenic effect was associated with an inhibitory outward current in orexigenic neuropeptide Y (NPY)/AgRP neurons. GLP1 injected into the ventral tegmental area reduced binge feeding, coupled with decrements in the rate of consumption and the percent daily caloric consumption during the binge interval. These reductions were associated with a GLP1-induced outward current in mesolimbic (A10) dopamine neurons. GLP1 administered into the ventromedial nucleus (VMN) reduced homeostatic feeding that again was associated with a diminished rate of consumption and abrogated by the GLP1 receptor antagonist exendin 9–39 and in AgRP-cre/PAC1Rfl/fl mice. This suppressive effect was linked with a GLP-induced inward current in VMN PACAP neurons, and further supported by the fact that GLP1 neurons in the nucleus tractus solitarius project to the VMN. Conversely, intra-VMN GLP1 had modest effects on binge feeding behavior. Finally, apoptotic ablation of VMN PACAP neurons obliterated the anorexigenic effect of intra-VMN GLP1 on homeostatic feeding in PACAP-cre mice but not their wildtype counterparts. Collectively, these data demonstrate that GLP1 acts within the homeostatic and hedonic circuits to curb appetitive behavior by exciting PACAP neurons, and inhibiting NPY/AgRP and A10 dopamine neurons. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 5281 KB  
Article
PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice
by Lilli Mey, Gabriel A. Bonaterra, Joy Hoffmann, Hans Schwarzbach, Anja Schwarz, Lee E. Eiden, Eberhard Weihe and Ralf Kinscherf
Int. J. Mol. Sci. 2024, 25(24), 13245; https://doi.org/10.3390/ijms252413245 - 10 Dec 2024
Cited by 5 | Viewed by 1459
Abstract
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in [...] Read more.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE−/− atherosclerosis model for possible effects on atherogenesis. Adult male ApoE−/− mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham. Effects of treatment on atherosclerotic plaques, lumen stenosis, apoptosis and pro-inflammatory signatures were analyzed in the brachiocephalic trunk (BT). The percentage of Maxadilan treated mice exhibiting plaques under SC and CED was lower than that of Sham or M65 treatment indicating opposite effects of Maxadilan and M65. Maxadilan application inhibited lumen stenosis in SC and CED mice compared to the Sham mice. In spite of increased cholesterol levels, lumen stenosis of Maxadilan-treated mice was similar under CED and SC. In contrast, M65 under SC or CED did not reveal a significant influence on lumen stenosis. Maxadilan significantly reduced the TNF-α-immunoreactive (TNF-α+) area in the plaques under CED, but not under SC. In contrast, the IL-1β+ area was reduced after Maxadilan treatment in SC mice but remained unchanged in CED mice compared to Sham mice. Maxadilan reduced caspase-3 immunoreactive (caspase-3+) in the tunica media under both, SC and CED without affecting lipid content in plaques. Despite persistent hypercholesterolemia, Maxadilan reduces lumen stenosis, apoptosis and TNF-α driven inflammation. Our data suggest that Maxadilan provides atheroprotection by acting downstream of hypercholesterolemia-induced vascular inflammation. This implicates the potential of PAC1-specific agonist drugs against atherosclerosis even beyond statins and PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors. Full article
(This article belongs to the Special Issue Atherosclerosis: From Molecular Basis to Therapy)
Show Figures

Figure 1

15 pages, 5132 KB  
Article
Methoprene-Tolerant (Met) Acts as Methyl Farnesoate Receptor to Regulate Larva Metamorphosis in Mud Crab, Scylla paramamosain
by Ming Zhao, Wei Wang, Xin Jin, Zhiqiang Liu, Minghao Luo, Yin Fu, Tianyong Zhan, Keyi Ma, Fengying Zhang and Lingbo Ma
Int. J. Mol. Sci. 2024, 25(23), 12746; https://doi.org/10.3390/ijms252312746 - 27 Nov 2024
Cited by 1 | Viewed by 1488
Abstract
The conserved role of juvenile hormone (JH) signals in preventing larvae from precocious metamorphosis has been confirmed in insects. Crustaceans have different metamorphosis types from insects; we previously proved that methyl farnesoate (MF) can prohibit larvae metamorphosis in mud crabs, but the molecular [...] Read more.
The conserved role of juvenile hormone (JH) signals in preventing larvae from precocious metamorphosis has been confirmed in insects. Crustaceans have different metamorphosis types from insects; we previously proved that methyl farnesoate (MF) can prohibit larvae metamorphosis in mud crabs, but the molecular signal of this process still needs to be elucidated. In this study, methoprene-tolerant (Met) of Scylla paramamosain was obtained and characterized, which we named Sp-Met. Sp-Met contains a 3360 bp ORF that encodes 1119 amino acids; the predicted protein sequences of Sp-Met include one bHLH, two PAS domains, one PAC domain, and several long unusual Gln repeats at the C-terminal. AlphaFold2 was used to predict the 3D structure of Sp-Met and the JH binding domain of Met. Furthermore, the binding properties between Sp-Met and MF were analyzed using CD-DOCK2, revealing a putative high affinity between the receptor and ligand. In silico site-directed mutagenesis suggested that insect Mets may have evolved to exhibit a higher affinity for both MF or JH III compared to the Mets of crustaceans. In addition, we found that the expression of Sp-Met was significantly higher in female reproductive tissues than in males but lower in most of the other examined tissues. During larval development, the expression variation in Sp-Met and Sp-Kr-h1 was consistent with the immersion effect of MF. The most interesting finding is that knockdown of Sp-Met blocked the inhibitory effect of MF on metamorphosis in the fifth zoea stage and induced pre-metamorphosis phenotypes in the fourth zoea stage. The knockdown of Sp-Met significantly reduced the expression of Sp-Kr-h1 and two ecdysone signaling genes, Sp-EcR and Sp-E93. However, only the reduction in Sp-Kr-h1 could be rescued by MF treatment. In summary, this study provides the first evidence that MF inhibits crustacean larval metamorphosis through Met and that the MF-Met→Kr-h1 signal pathway is conserved in mud crabs. Additionally, the crosstalk between MF and ecdysteroid signaling may have evolved differently in mud crabs compared to insects. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 13527 KB  
Article
Enhanced Humoral and Cellular Immune Responses Elicited by Adenoviral Delivery of SARS-CoV-2 Receptor-Binding Motif Fused to Human Fc
by Yea-Jin Lee, Maheswaran Easwaran, Yong-Sam Jung, Yingjuan Qian and Hyun-Jin Shin
Vaccines 2024, 12(11), 1247; https://doi.org/10.3390/vaccines12111247 - 1 Nov 2024
Cited by 1 | Viewed by 2022
Abstract
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed [...] Read more.
Background/Objectives: The receptor binding motif (RBM) of the SARS-CoV-2 spike protein is critical for viral entry into host cells. Development of a vaccine targeting this region is a promising strategy for COVID-19 prevention. To enhance the immunogenicity of SARS-CoV-2 vaccines, we developed an adenoviral vector expressing the RBM from the SARS-CoV-2 spike protein that fused to the human Fc (hFc) domain. Methods: The recombinant RBM_hFc fusion protein was successfully cloned into the pacAd5CMV-N-pA (pAd5) vector and expressed in HEK293 cells as a ~40 kDa protein. A recombinant adenovirus encoding RBM_hFc was subsequently generated and confirmed by cytopathic effect assay. Results: Western blot analysis verified the expression of RBM_hFc in the adenovirus (AdV). ELISA assays, validated for IgG detection, demonstrated a twofold increase in IgG antibody levels (M–1.090 at 450 nm; SD—±0.326; and 95% CI—0.250 [0.839 to 1.340]) in sera from BALB/c mice immunized with Ad/RBM_hFc, compared to the negative control group. Result suggests a robust humoral immune response induced by the Ad/RBM_hFc vaccine. Moreover, ELISpot assays demonstrated a tenfold increase in IFN-γ -producing cells (M—440 spot-forming cells; SD—±124.976; and 95% CI—75.522 [364.478 to 515.522]) in mice immunized with AdV/RBM_hFc compared to the negative control group. Result proved that AdV/RBM_hFc-stimulated a robust cellular immune response in animal model. Conclusions: Our findings indicate that the RBM_hFc fusion protein enhances both humoral and cellular immune responses. These results suggest the potential of adenoviral vectors carrying RBM_hFc as vaccine candidates. However, comprehensive evaluation of the protective efficacy of these adenoviral vectors will necessitate rigorous experimental studies. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

15 pages, 1255 KB  
Article
Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients
by Joanna Maciejewska-Renkowska, Justyna Wachowiak, Magdalena Telec, Maria Kamieniarz-Mędrygał, Sławomir Michalak, Radosław Kaźmierski, Wojciech Kociemba, Wojciech P. Kozubski and Maria Łukasik
Int. J. Mol. Sci. 2024, 25(20), 11219; https://doi.org/10.3390/ijms252011219 - 18 Oct 2024
Cited by 1 | Viewed by 1548
Abstract
The levels of platelet-derived extracellular vesicles (pEVs) have been reported as elevated in acute ischemic stroke (IS). However, the results of studies remain equivocal. This prospective, case-control study included 168 patients with IS, 63 matched disease controls (DC), and 21 healthy controls (HC). [...] Read more.
The levels of platelet-derived extracellular vesicles (pEVs) have been reported as elevated in acute ischemic stroke (IS). However, the results of studies remain equivocal. This prospective, case-control study included 168 patients with IS, 63 matched disease controls (DC), and 21 healthy controls (HC). Total pEVs concentration, the concentration of phosphatidylserine-positive pEVs (PS+pEVs), the percentage of PS+pEVs (%PS+pEVs) and the concentration of pEVs with expression of CD62P+, CD40L+, CD31+, and active form of GPIIb/IIIa receptor (PAC-1+) were assessed on days 1, 3, 10, and 90 with the Apogee A50-Micro flow cytometer. The concentrations of pEVs, PS+pEVs, and %PS+pEVs were significantly higher after IS vs. HC (p < 0.001). PS+pEVs were higher after stroke vs. controls (p < 0.01). The concentrations of pEVs with expression of studied molecules were higher on D1 and D3 after stroke vs. controls. The concentration of pEVs after platelet stimulation with ADP was significantly diminished on D3. IS most notably affects the phenotype of pEVs with a limited effect on the number of pEVs. Ischemic stroke moderately disturbs platelet microvesiculation, most notably in the acute phase, affecting the phenotype of pEVs, with a limited impact on the number of pEVs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 1503 KB  
Article
Molecular Interactions Governing the Rat Aryl Hydrocarbon Receptor Activities of Polycyclic Aromatic Compounds and Predictive Model Development
by Lingmin Jin, Bangyu Chen, Guangcai Ma, Xiaoxuan Wei and Haiying Yu
Molecules 2024, 29(19), 4619; https://doi.org/10.3390/molecules29194619 - 29 Sep 2024
Cited by 1 | Viewed by 1313
Abstract
Polycyclic aromatic compounds (PACs) exhibit rat aryl hydrocarbon receptor (rAhR) activities, leading to diverse biological or toxic effects. In this study, the key amino residues and molecular interactions that govern the rAhR activity of PACs were investigated using in silico strategies. The homology [...] Read more.
Polycyclic aromatic compounds (PACs) exhibit rat aryl hydrocarbon receptor (rAhR) activities, leading to diverse biological or toxic effects. In this study, the key amino residues and molecular interactions that govern the rAhR activity of PACs were investigated using in silico strategies. The homology model of rAhR was first docked with 90 PACs to yield complexes, and the results of the molecular dynamics simulations of 16 typical complexes showed that the binding energies of the complexes range from −7.37 to −26.39 kcal/mol. The major contribution to the molecular interaction comes from van der Waals forces, and Pro295 and Arg316 become the key residues involved in most complexes. Two QSAR models were further developed to predict the rAhR activity of PACs (in terms of log IEQ for PACs without halogen substitutions and log%-TCDD-max for halogenated PACs). Both models have good predictive ability, robustness, and extrapolation ability. Molecular polarizability, electronegativity, size, and nucleophilicity are identified as the important factors affecting the rAhR activity of PACs. The developed models could be employed to predict the rAhR activity of other reactive PACs. This work provides insight into the mechanisms and interactions of the rAhR activity of PACs and assists in the assessment of their fate and risk in organisms. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

12 pages, 1045 KB  
Article
Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro
by Ioannis K. Koutsaliaris, Despoina Pantazi, Aikaterini N. Tsouka, Ourania Argyropoulou, Constantinos C. Tellis and Alexandros D. Tselepis
Int. J. Mol. Sci. 2024, 25(18), 10136; https://doi.org/10.3390/ijms251810136 - 21 Sep 2024
Cited by 3 | Viewed by 7248
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for [...] Read more.
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for hypertriglyceridemia, alongside antiplatelet therapy in cardiovascular disease (CVD) patients. In this regard, we studied the effect of EPA and DHA, in combination with antiplatelet drugs, in platelet aggregation and P-selectin and αIIbβ3 membrane expression. The antiplatelet drugs aspirin and triflusal, inhibitors of cyclooxygenase-1 (COX-1); ticagrelor, an inhibitor of the receptor P2Y12; vorapaxar, an inhibitor of the PAR-1 receptor, were combined with DHA or EPA and evaluated against in vitro platelet aggregation induced by agonists arachidonic acid (AA), adenosine diphosphate (ADP) and TRAP-6. We further investigated procaspase-activating compound 1 (PAC-1) binding and P-selectin membrane expression in platelets stimulated with ADP and TRAP-6. Both DHA and EPA displayed a dose-dependent inhibitory effect on platelet aggregation induced by AA, ADP and TRAP-6. In platelet aggregation induced by AA, DHA significantly improved acetylsalicylic acid (ASA) and triflusal’s inhibitory activity, while EPA enhanced the inhibitory effect of ASA. In combination with EPA, ASA and ticagrelor expressed an increased inhibitory effect towards ADP-induced platelet activation. Both fatty acids could not improve the inhibitory effect of vorapaxar on AA- and ADP-induced platelet aggregation. In the presence of EPA, all antiplatelet drugs displayed a stronger inhibitory effect towards TRAP-6-induced platelet activation. Both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though they had no effect on P-selectin expression induced by ADP or TRAP-6. The antiplatelet drugs exhibited heterogeneity regarding their effect on P-selectin and αIIbβ3 membrane expression, while both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though had no effect on P-selectin expression induced by ADP or TRAP-6. The combinatory effect of DHA and EPA with the antiplatelet drugs did not result in enhanced inhibitory activity compared to the sum of the individual effects of each component. Full article
(This article belongs to the Special Issue Platelet Activation in Human Health and Disease)
Show Figures

Figure 1

16 pages, 9707 KB  
Article
Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling
by Alessandro Castorina, Jurgen Scheller, Kevin A. Keay, Rubina Marzagalli, Stefan Rose-John and Iain L. Campbell
Int. J. Mol. Sci. 2024, 25(17), 9453; https://doi.org/10.3390/ijms25179453 - 30 Aug 2024
Cited by 5 | Viewed by 1833
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective [...] Read more.
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences. Full article
(This article belongs to the Special Issue New Mechanisms and Therapeutics in Neurological Diseases 3.0)
Show Figures

Graphical abstract

16 pages, 2324 KB  
Article
Chromosome-Level Genome Assembly and Comparative Genomic Analysis of the Barbel Chub (Squaliobarbus curriculus) by Integration of PacBio Sequencing and Hi-C Technology
by Baidong Zhang, Yanling Sun, Yang Liu, Xiaojun Song, Su Wang, Tiaoyi Xiao and Pin Nie
Fishes 2024, 9(8), 327; https://doi.org/10.3390/fishes9080327 - 20 Aug 2024
Viewed by 2187
Abstract
The barbel chub (Squaliobarbus curriculus), the only species in the genus, is widely distributed in freshwater lakes and rivers at different latitudes in East Asia, with fishery and biodiversity importance, and is an emerging commercially important fish in China. However, the [...] Read more.
The barbel chub (Squaliobarbus curriculus), the only species in the genus, is widely distributed in freshwater lakes and rivers at different latitudes in East Asia, with fishery and biodiversity importance, and is an emerging commercially important fish in China. However, the resource of this species has dramatically declined due to anthropogenic activities such as over-exploitation, as well as water pollution. Genomic resources for S. curriculus are useful for the management and sustainable utilization of this important fish species, and also for a better understanding of its genetic variation in the region. Here, we report the chromosome-level assembly of the S. curriculus genome obtained from the integration of PacBio long sequencing and Hi-C technology. A total of 155.34 Gb high-quality PacBio sequences were generated, and the preliminary genome assembly was 894.95 Mb in size with a contig N50 being 20.34 Mb. By using Hi-C data, 99.42% of the assembled sequences were anchored to 24 pseudochromosomes, with chromosome lengths ranging from 27.22 to 58.75 Mb. A total of 25,779 protein-coding genes were predicted, 94.70% of which were functionally annotated. Moreover, S. curriculus shows resistance to grass carp haemorrhagic disease (GCHD) caused by grass carp reovirus (GCRV), which seriously hinders the status and future perspectives of commercial grass carp production. Phylogenetic analysis indicated that S. curriculus diverged with grass carp (Ctenopharyngodon idellus) approximately 20.80 million years ago. Annotations of the expanded gene families were found to be largely enriched in immune-related KEGG pathway categories. Moreover, a total of 18 Toll-like receptor (TLR) genes were identified from the whole genome of S. curriculus. The high-quality genome assembled in this study will provide a valuable resource for accelerating ecological, evolutionary, and genetic research on S. curriculus. Full article
(This article belongs to the Special Issue Advances in Fish Genome and Transcriptomes)
Show Figures

Figure 1

24 pages, 16101 KB  
Article
Differential Expression of PACAP/VIP Receptors in the Post-Mortem CNS White Matter of Multiple Sclerosis Donors
by Margo Iris Jansen, Giuseppe Musumeci and Alessandro Castorina
Int. J. Mol. Sci. 2024, 25(16), 8850; https://doi.org/10.3390/ijms25168850 - 14 Aug 2024
Viewed by 1803
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuroprotective and anti-inflammatory molecules of the central nervous system (CNS). Both bind to three G protein-coupled receptors, namely PAC1, VPAC1 and VPAC2, to elicit their beneficial effects in various CNS diseases, [...] Read more.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuroprotective and anti-inflammatory molecules of the central nervous system (CNS). Both bind to three G protein-coupled receptors, namely PAC1, VPAC1 and VPAC2, to elicit their beneficial effects in various CNS diseases, including multiple sclerosis (MS). In this study, we assessed the expression and distribution of PACAP/VIP receptors in the normal-appearing white matter (NAWM) of MS donors with a clinical history of either relapsing–remitting MS (RRMS), primary MS (PPMS), secondary progressive MS (SPMS) or in aged-matched non-MS controls. Gene expression studies revealed MS-subtype specific changes in PACAP and VIP and in the receptors’ levels in the NAWM, which were partly corroborated by immunohistochemical analyses. Most PAC1 immunoreactivity was restricted to myelin-producing cells, whereas VPAC1 reactivity was diffused within the neuropil and in axonal bundles, and VPAC2 in small vessel walls. Within and around lesioned areas, glial cells were the predominant populations showing reactivity for the different PACAP/VIP receptors, with distinctive patterns across MS subtypes. Together, these data identify the differential expression patterns of PACAP/VIP receptors among the different MS clinical entities. These results may offer opportunities for the development of personalized therapeutic approaches to treating MS and/or other demyelinating disorders. Full article
Show Figures

Figure 1

Back to TopTop