Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,204)

Search Parameters:
Keywords = PEA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 559 KB  
Article
The Improvement of Growth Parameters and Intercepted Photosynthetically Active Radiation in Pea Varieties as Influenced by Nitrogen Fertilization
by Daiva Janusauskaite
Plants 2025, 14(22), 3450; https://doi.org/10.3390/plants14223450 - 11 Nov 2025
Abstract
The field experiment aimed to evaluate the effect of different nitrogen rates on accumulation of aboveground dry mass (AGDM), leaves area index (LAI), and intercepted photosynthetically active radiation (iPAR) of pea (Pisum sativum L.) varieties. The experiment was arranged in a factorial [...] Read more.
The field experiment aimed to evaluate the effect of different nitrogen rates on accumulation of aboveground dry mass (AGDM), leaves area index (LAI), and intercepted photosynthetically active radiation (iPAR) of pea (Pisum sativum L.) varieties. The experiment was arranged in a factorial randomized block design consisting of three levels of the first factor (variety) and seven levels of the second factor (NPK fertilization treatments were used: (1) NPK 0:0:0 (control), (2) NPK 0:40:80, (3) NPK 15:40:80, (4) NPK 30:40:80, (5) NPK 45:40:80, (6) NPK 15 + 15:40:80, (7) NPK 60:40:80). The growth indicators (LAI and AGDM) and iPAR were assessed three times during the growing season. Nitrogen fertilization positively influenced LAI, but significant differences in LAI were found only under splitted N30 (N15 + N15), N45, and N60 applications, compared to the treatment N0 P40K80. In the dry 2015 and the optimal moisture 2016, N30, N45, and N60 rates significantly increased AGDM. The influence of fertilization on iPAR varied between experimental years, and it was strongest in the dry 2015, when applying N15+15 and N60 fertilization significantly increased iPAR, compared to the control. According to LAI and iPAR data, pea varieties were ranked in descending order: Simona, Ieva DS, and Respect. LAI significantly (p ≤ 0.01) correlated with AGDM and iPAR, but the relationship weakened as peas reached later growth stages. These results provide valuable knowledge, and it will be useful for researchers in developing new cultivation methodologies to achieve higher semi-leafless pea productivity by applying different combinations of nutrition and new varieties. Full article
55 pages, 971 KB  
Review
Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review
by Alireza Jahan-Mihan, Dalia El Khoury, Gabrielle J. Brewer and Alyssa Chapleau
Nutrients 2025, 17(22), 3528; https://doi.org/10.3390/nu17223528 - 11 Nov 2025
Abstract
Proteins elicit various metabolic and physiological functions that are related to physical performance. Due to increased need in athletes, protein supplementation has been widely used to support recovery and performance. However, the extent to which acute gains in muscle protein synthesis translate into [...] Read more.
Proteins elicit various metabolic and physiological functions that are related to physical performance. Due to increased need in athletes, protein supplementation has been widely used to support recovery and performance. However, the extent to which acute gains in muscle protein synthesis translate into measurable performance remains debated. This narrative review synthesizes evidence from trials on supplemental proteins across resistance, endurance, and mixed-modality training, comparing sources (whey, casein, soy, pea, and blends). Moreover, this review summarizes dosing and timing strategies, with notes for master, diabetic, and female athletes. It is well-established that supplemental protein enhances fat-free mass and, to a lesser extent, strength when baseline dietary protein is suboptimal. However, the effects are smaller when habitual intake already meets athletic targets. Whey, as a rapid protein and rich in leucine, reliably elicits an acute anabolic response, while casein provides prolonged elevated aminoacidemia. When total intake and leucine thresholds are matched, plant proteins and blends can yield comparable long-term adaptations. In addition, studies showed that the distribution and strategic timing around exercise (post-exercise first, with optional pre-sleep casein or blends) support recovery during high-frequency training or energy deficit. Protein co-ingested with carbohydrate in endurance and high-intensity functional training (HIFT) can also help glycogen restoration and attenuate muscle-damage markers, though effects on sport outcomes are inconsistent. The evidence in diabetic athletes is limited; guidance extrapolates from diabetes and athlete studies, with benefits apparent when intake, quality, or distribution are limited. Furthermore, evidence indicates that anabolic resistance in master athletes requires higher per-meal doses and distribution, with post-exercise and pre-sleep feedings valuable. Consistently, female athletes partaking in aerobic and resistance training while supplementing with protein demonstrate desired body composition adaptations. Overall, although supplemental protein helps close gaps between intake and physiological demand, various factors may influence its regimen. Protein source may help the kinetics balance, amino-acid profile, and dietary preferences. Alternatively, timing may influence the protein effects on training and recovery. Full article
(This article belongs to the Special Issue Effects of Dietary Protein Intake on Chronic Diseases)
30 pages, 3051 KB  
Article
Neuroprotective Pathway Modulation by a Novel Coriandrum sativum, N-Acetylcysteine and Glutathione-Based Formulation: Insights from In Vitro 3D Models
by Simone Mulè, Sara Ferrari, Rebecca Galla and Francesca Uberti
Int. J. Mol. Sci. 2025, 26(22), 10857; https://doi.org/10.3390/ijms262210857 - 8 Nov 2025
Viewed by 223
Abstract
Pain remains a major clinical challenge due to its complex physiopathology and limited treatment options. In this context, several supplements based on palmitoylethanolamide (PEA) and alpha-lipoic acid (ALA) are known for their neuroprotective properties. ALA-based supplements have shown potential, but concerns about adverse [...] Read more.
Pain remains a major clinical challenge due to its complex physiopathology and limited treatment options. In this context, several supplements based on palmitoylethanolamide (PEA) and alpha-lipoic acid (ALA) are known for their neuroprotective properties. ALA-based supplements have shown potential, but concerns about adverse effects persist. This study examines the formulations of two commercial products based on ALA and PEA, IperALA® and IperALA® Forte, in which ALA and vitamin D3 are replaced with Coriandrum sativum extract (C. sativum e.s.), N-acetylcysteine (NAC) and glutathione (GSH), assessing improvement of neuroprotective, anti-inflammatory and analgesic properties of the new formulation. Intestinal, blood–brain barrier (BBB), and central nervous system (CNS) models were sequentially stimulated with the test compounds. Both formulations were assessed for cytotoxicity, barrier integrity, permeability, oxidative stress, inflammation, and neuroprotection-related biomarkers. IperALA® Forte demonstrated superior performance compared to IperALA® and individual agents. It enhanced cell viability, preserved intestinal and BBB integrity, and improved compound permeability. Notably, it reduced ROS and pro-inflammatory cytokines (TNFα, IL-1), while increasing analgesic markers (CB2R, GABA) in the central system. The replacement of ALA and vitamin D3 with C. sativum, NAC, and GSH in IperALA® Forte significantly improved the neuroprotective, antioxidant, and anti-inflammatory profile of the supplement. These results indicate a possible connection between the observed neuroprotective properties and the pathways involved in nociception and pain regulation, stating the hypothetical potential relevance of this approach for the treatment of pain-related conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

32 pages, 496 KB  
Review
Sustainability of Animal Production Chains: Alternative Protein Sources as an Ecological Driver in Animal Feeding: A Review
by Massimiliano Lanza, Marco Battelli, Luigi Gallo, Francesca Soglia, Fulvia Bovera, Francesco Giunta, Riccardo Primi, Luisa Biondi, Diana Giannuzzi, Marco Zampiga, Nicola Francesco Addeo, Antonello Cannas, Pier Paolo Danieli, Bruno Ronchi and Gianni Matteo Crovetto
Animals 2025, 15(22), 3245; https://doi.org/10.3390/ani15223245 - 8 Nov 2025
Viewed by 255
Abstract
Sustainability of animal production requires reducing reliance on soybean meal by identifying viable alternative protein sources. Within the framework of the Italian Agritech National Research Center, seven Italian research groups collaborated to evaluate unconventional feed ingredients and their effects on animal performance and [...] Read more.
Sustainability of animal production requires reducing reliance on soybean meal by identifying viable alternative protein sources. Within the framework of the Italian Agritech National Research Center, seven Italian research groups collaborated to evaluate unconventional feed ingredients and their effects on animal performance and product quality. Alternative legume seeds (peas, chickpeas, faba bean, and lupins) can partially or completely replace soybean meal without impairing productivity, while enhancing product health value and shelf-life through bioactive compounds. Microalgae (Chlorella, Spirulina) improved carotenoid content, antioxidant activity, fatty acid profile, and cholesterol levels in poultry products, with limited effects in pigs. Insects supported optimal growth in fish at 25–30% inclusion, whereas maximum recommended levels are 15% in broilers and 24% in laying hens to sustain growth, egg production, and quality. Camelina by-products are suitable for poultry diets at up to 5–10%, beyond which performance declines. Whole-plant soybean silage, tef (Eragrostis tef), and triticale–lupin intercropping represent promising protein-rich resources for ruminants, provided diets maintain balanced protein-to-energy ratios, adequate fibre characteristics, and appropriate harvest timing under drought-prone conditions. Collectively, these findings highlight the potential of diverse protein sources to improve the sustainability of livestock systems while preserving productivity and enhancing the nutritional quality of animal-derived foods. Full article
(This article belongs to the Section Animal Nutrition)
19 pages, 1654 KB  
Article
Production Efficiency or Food Miles: Comparative Life Cycle Assessment of Local and Imported Peas and Lentils at Market in Western Europe
by Nicole Bamber, Denis Tremorin and Nathan Pelletier
Agriculture 2025, 15(22), 2315; https://doi.org/10.3390/agriculture15222315 - 7 Nov 2025
Viewed by 182
Abstract
A life cycle assessment was conducted to compare the impacts of peas and lentils produced in Canada, France, and Russia, transported to market in Western Europe, to assess the systems-level sustainability implications of changing production and consumption profiles of internationally traded commodity pulse [...] Read more.
A life cycle assessment was conducted to compare the impacts of peas and lentils produced in Canada, France, and Russia, transported to market in Western Europe, to assess the systems-level sustainability implications of changing production and consumption profiles of internationally traded commodity pulse crops. For all but 1–2 impact categories, imported Canadian peas and lentils outperformed those imported from Russia, due to the lower yields, higher levels of tillage, higher field-level emissions, and higher distances of truck transportation for Russian pulses. French peas had higher impacts of production than Canadian peas, for all categories but land use, due to higher levels of fertilizer inputs, irrigation, field activities, and field-level emissions. However, for 7 out of 12 impact categories, the impacts of the transportation of Canadian peas to Western Europe outweighed the higher impacts of the production of French peas. This demonstrates potential sustainability benefits of Canadian pulses, with some trade-offs from the additional impacts of transportation to market, adding nuance to the discussion around the importance of “food miles” in agricultural sustainability. Compared to previous studies, this demonstrates the importance of multi-criteria and regionalized assessments. Full article
Show Figures

Figure 1

22 pages, 1055 KB  
Article
Integrated Analysis of Proteomic Marker Databases and Studies Associated with Aging Processes and Age-Dependent Conditions: Optimization Proposals for Biomedical Research
by Mikhail S. Arbatskiy, Dmitriy E. Balandin and Alexey V. Churov
Proteomes 2025, 13(4), 57; https://doi.org/10.3390/proteomes13040057 - 6 Nov 2025
Viewed by 205
Abstract
Background: The search for reliable aging biomarkers using proteomic databases and large-scale proteomic studies presents a significant challenge in biogerontology. Existing proteomic databases and studies contain valuable information; however, there is inconsistency in approaches to biomarker selection and data integration. This creates [...] Read more.
Background: The search for reliable aging biomarkers using proteomic databases and large-scale proteomic studies presents a significant challenge in biogerontology. Existing proteomic databases and studies contain valuable information; however, there is inconsistency in approaches to biomarker selection and data integration. This creates barriers to translating existing knowledge into clinical practice and use in biomedical research. This work analyzed experimental proteomic studies, the content of proteomic databases, and proposed recommendations for optimization and improvement of proteomic database formation and enrichment. Methods: The study utilized publications devoted to proteomic data acquisition methods, proteomic databases, and experimental studies. Results: Methods for obtaining proteomic data were analyzed (Protein Pathway Array (PPA), Tissue Microarray (TMA), Luminex (Bead Array), MSD (Meso Scale Discovery), Simoa (Quanterix), SOMAscan (SomaLogic), Olink (PEA), Alamar NULISA (PEA+), and Oxford Nanopore. A total of 16 proteomic databases were investigated (HAGR, KEGG, STRING, Aging Atlas, HALL, Human Protein Atlas, UniProt, AgeAnnoMO, AgeFactDB, AgingBank, iProX, jMorp, jPOSTrepo, MassIVE, MetaboAge DB, PRIDE Archive). Additionally, 22 proteomic studies devoted to aging and age-associated diseases were analyzed. Conclusions: Proteomic databases and experimental studies individually contain valuable information about aging biomarkers. Using data from different sources within biomedical research poses challenges for improving and optimizing methodological solutions for publication selection, database formation, and marker development. Full article
Show Figures

Figure 1

13 pages, 1157 KB  
Article
Evaluation of Total Eosinophil Counts, Serum Allergen-Specific IgE and Related Cytokines in Dogs with Atopic Dermatitis
by Min-Joo Chae, Min-Hee Kang and Hee-Myung Park
Animals 2025, 15(21), 3219; https://doi.org/10.3390/ani15213219 - 5 Nov 2025
Viewed by 209
Abstract
Canine atopic dermatitis (AD) is a chronic allergic skin disease in which various immunological markers have been investigated. While peripheral eosinophil counts, serum allergen-specific immunoglobulin E (IgE), and cytokines have each been evaluated in allergic disorders, their simultaneous assessment in dogs with AD [...] Read more.
Canine atopic dermatitis (AD) is a chronic allergic skin disease in which various immunological markers have been investigated. While peripheral eosinophil counts, serum allergen-specific immunoglobulin E (IgE), and cytokines have each been evaluated in allergic disorders, their simultaneous assessment in dogs with AD has rarely been reported in Korea. This study aimed to evaluate the diagnostic and clinical utility of these parameters in affected dogs. A total of 93 dogs were included between August 2019 and February 2020, comprising 65 dogs diagnosed with AD and 28 healthy controls. Clinical information, peripheral blood eosinophil counts and ratios, serum allergen-specific IgE using a multiple allergen panel (60 allergens), and cytokines related to T helper 2 (Th2) and T regulatory (Treg) cells (IL-4, IL-13, IL-31, TGF-β1) were analyzed. The mean age of AD dogs was 6.34 ± 3.99 years, with a predominance of small breeds and males. Eosinophil counts and ratios showed no significant difference between groups. In contrast, allergen-specific IgE levels were significantly elevated for several allergens, including Dermatophagoides pteronyssinus, Acarus siro, Tyrophagus putrescentiae, alder/birch, hazel, oak, cladosporium, and selected dietary antigens (pea, soybean, pumpkin, apple) (p < 0.05). Sensitization rates were also higher for Acarus siro, Tyrophagus putrescentiae, oak, and sheep sorrel (p < 0.05). Th2-related cytokines tended to increase and TGF-β1 tended to decrease in AD dogs, though without statistical significance. These findings indicate that peripheral eosinophil counts have limited diagnostic value, whereas allergen-specific IgE testing provides clinically useful information for the diagnosis and management of canine AD. Further research stratifying disease stages and assessing local tissue cytokine expression is warranted. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

14 pages, 679 KB  
Article
Living Mulches, Rolled Cover Crops, and Plastic Mulch: Effects on Soil Properties, Weed Suppression, and Yield in Organic Strawberry Systems
by Arianna Bozzolo, Jacob Pecenka and Andrew Smith
Plants 2025, 14(21), 3385; https://doi.org/10.3390/plants14213385 - 5 Nov 2025
Viewed by 179
Abstract
Plastic mulch is widely used in organic strawberry production but raises sustainability concerns due to its persistence, disposal challenges, and contribution to microplastic pollution. This study evaluated the potential of high-residue cover crops and living mulches as alternatives to plastic mulch in coastal [...] Read more.
Plastic mulch is widely used in organic strawberry production but raises sustainability concerns due to its persistence, disposal challenges, and contribution to microplastic pollution. This study evaluated the potential of high-residue cover crops and living mulches as alternatives to plastic mulch in coastal California. Over two seasons (2022–2024), we compared five mulching treatments: black polyethylene mulch (Plastic); a white clover (Trifolium repens) living mulch (Clover); two roller-crimped sorghum–sudangrass and field pea mixtures (Sorghum 1, Sorghum 2); and a roller-crimped buckwheat–pea mixture (Buckwheat). The objectives were to evaluate the effectiveness of these treatments on (i) soil properties and biological indicators, (ii) weed suppression, and (iii) strawberry yield in organic systems. A schematic timeline was developed to depict cover-crop growth, termination, and strawberry production across both years. Compost (10 t·ha−1) and fish emulsion (5–1–1 NPK, 4 L·ha−1 biweekly) were applied to all treatments during fruiting. Sorghum residues produced the highest biomass (up to 23 t·ha−1) and supported yields comparable to plastic mulch in 2023. Under lower-yield conditions in 2024, sorghum-based treatments outperformed plastic. Soil responses were modest and time-point specific: Sorghum 1 showed higher organic C and organic N pre-harvest in 2023, and both sorghum treatments increased soil organic matter pre-harvest in 2024. Biological indicators such as CO2–C and microbially active carbon declined seasonally across all treatments, indicating strong temporal control. Weed outcomes diverged by system—Clover suppressed weeds effectively but reduced yield by >50% due to competition, while Buckwheat decomposed rapidly and provided limited late-season suppression. These results demonstrate that rolled high-residue cover crops, particularly sorghum-based systems, can reduce dependence on plastic mulch while maintaining yields and enhancing soil cover. Living mulches and short-lived covers may complement residue systems when managed to minimize competition and extend ground cover. Full article
Show Figures

Figure 1

20 pages, 1446 KB  
Article
Design Thinking for the Development of an Affordable Pea Sheller: Addressing Co-Design in Rural Areas
by Ivonne Angelica Castiblanco Jimenez and Joan Paola Cruz Gonzalez
AgriEngineering 2025, 7(11), 360; https://doi.org/10.3390/agriengineering7110360 - 1 Nov 2025
Viewed by 401
Abstract
Manual pea shelling is a labor-intensive task facing small-scale farmers in rural areas, requiring substantial physical effort and limiting productivity. This study employed a Design Thinking methodology to co-design an affordable, automatic pea sheller addressing the specific needs of resource-constrained farmers. The methodology [...] Read more.
Manual pea shelling is a labor-intensive task facing small-scale farmers in rural areas, requiring substantial physical effort and limiting productivity. This study employed a Design Thinking methodology to co-design an affordable, automatic pea sheller addressing the specific needs of resource-constrained farmers. The methodology comprised five phases: empathizing with farmers through interviews, defining technical specifications from user requirements and benchmarking analysis, ideating preliminary concepts through collaborative brainstorming, prototyping using 3D-printed food-grade materials, and testing with end-users under real operating conditions. The developed sheller features counter-rotating rollers operating at optimized speed with dual compartments for grain and shell separation. Experimental validation demonstrated good extraction efficiency with minimal grain damage, while field testing confirmed substantial time reduction compared to manual shelling and strong user acceptance. The fully 3D-printable design enables affordable, customizable production suitable for small-scale operations, demonstrating how user-centered co-design can create accessible agricultural technology that addresses both technical performance and socioeconomic constraints in rural communities. Full article
Show Figures

Figure 1

21 pages, 3467 KB  
Article
Improving the Texturization of Pea Protein Through the Addition of a Mung Bean Protein Extract Solution and Optimizing the Moisture Content, Screw Speed, and Extrusion Temperature
by Zhe Cheng, Shunzhang Ma, Ruiling Shen, Jilin Dong and Yunlong Li
Foods 2025, 14(21), 3750; https://doi.org/10.3390/foods14213750 - 31 Oct 2025
Viewed by 230
Abstract
This study explores the use of a homemade mung bean protein extract solution (MP) as the moisture source in high-moisture extrusion to produce pea–mung bean composite textured protein (PMP). Single-factor experiments assessed the effects of MP addition amount (30–70%), screw speed (140–220 rpm), [...] Read more.
This study explores the use of a homemade mung bean protein extract solution (MP) as the moisture source in high-moisture extrusion to produce pea–mung bean composite textured protein (PMP). Single-factor experiments assessed the effects of MP addition amount (30–70%), screw speed (140–220 rpm), and extrusion temperature (140–180 °C) on the textural, physicochemical, and structural properties, followed by optimization using response surface methodology (RSM). MP addition amounts between 50% and 60% promoted higher surface hydrophobicity, a higher disulfide bond content, more ordered secondary structures, and a higher intrinsic fluorescence, accompanied by improved water- and oil-holding capacities, bulk density, and texturization degree (p < 0.05). Screw speeds of 160–180 rpm enhanced texturization and texture via increased shear and reduced residence time, whereas higher extrusion temperatures darkened the color (Maillard browning) and reduced texturization and the bulk density. RSM found that the optimal conditions were 53% MP, 160 rpm, and 150 °C, yielding a theoretical maximum texturization degree of 1.55, which was experimentally validated (1.53 ± 0.02). These findings support MP as an effective green moisture source to tailor the structure and functionality of pea-based high-moisture extrudates. Future work will integrate calibrated SME, sensory evaluation, and application testing in meat-analog formats. Full article
Show Figures

Figure 1

18 pages, 5489 KB  
Article
Enhancement of Pea–Oat Composite Protein Gel Properties Through Ultrasound Treatment Affects Structural and Functional Characteristics
by Sai Wang, Mengxiao Li, Guimei Dong, Ruiling Shen, Jilin Dong and Yunlong Li
Foods 2025, 14(21), 3751; https://doi.org/10.3390/foods14213751 - 31 Oct 2025
Viewed by 359
Abstract
With increasing attention to health, plant protein products have gained significant market potential due to their growing consumer demand. This study researches the influence of ultrasonic treatment on the structure and function of pea–oat composite protein gel (POPG) to enhance its elasticity and [...] Read more.
With increasing attention to health, plant protein products have gained significant market potential due to their growing consumer demand. This study researches the influence of ultrasonic treatment on the structure and function of pea–oat composite protein gel (POPG) to enhance its elasticity and thermal stability. The ultrasonic treatment parameters were regulated to power (200–600 W for 30 min) and ultrasonic time (20–40 min at 400 W) during the preparation of POPG, and the properties and structure, including gel strength, rheological analysis, water-holding capacity (WHC), thermal characteristics, fluorescence performance, and microstructure, were further evaluated. The results showed that the POPG samples exhibited optimal values in WHC, gel strength, surface hydrophobicity, free sulfhydryl amount, and endogenous fluorescence at 400 W ultrasonic for 30 min compared with the untreated POPG. Rheological analysis indicated that POPG displayed the highest storage modulus and improved viscoelasticity. Ultrasonication resulted in an augmentation in β-sheet content, hence creating a more compact network structure. DSC and TGA revealed improved thermal stability, while SEM and CLSM exhibited a homogeneous and firm gel structure of POPG. This research offers the theory that ultrasonic technology can improve the performance of plant-based composite gels. Full article
Show Figures

Figure 1

15 pages, 1126 KB  
Article
The Influence of Foliar Application of Nod Factors (LCOs) and Microelements on the Growth, Development, and Yield of Peas (Pisum sativum L.)
by Janusz Podleśny, Jerzy Wielbo, Anna Podleśna, Hanna Klikocka and Dominika Kidaj
Agronomy 2025, 15(11), 2536; https://doi.org/10.3390/agronomy15112536 - 31 Oct 2025
Viewed by 268
Abstract
Peas are a popular crop grown in Poland, but their yields are variable and often low; therefore, new cultivation methods are constantly being sought. In this paper, we present the results of a three-year greenhouse study examining the effect of preparations containing rhizobial [...] Read more.
Peas are a popular crop grown in Poland, but their yields are variable and often low; therefore, new cultivation methods are constantly being sought. In this paper, we present the results of a three-year greenhouse study examining the effect of preparations containing rhizobial Nod factors and/or selected microelements (B, Cu, Fe, Mn, Zn, and Mo) on the physiological parameters, growth, and yield of peas. Pea plants were tested at the flowering stage (BBCH 60), at the green ripe stage (BBCH 75), and at the fully ripe stage (BBCH 90). Leaf area, SPAD, gas exchange parameters, and chlorophyll fluorescence were measured, and the number and mass of root nodules, as well as seed yield and yield components, were determined. The treatment was most effective when Nod factors were used in combination with microelements. The increase in pea yield induced by the application of both components can be attributed to the higher number of pods and seeds per plant because no significant variations were noted in the number of seeds per pod and 1000 seed weight. The number and weight of nodules were significantly correlated with the pea yield, and the value of the correlation coefficients was influenced by the application of both components. Full article
(This article belongs to the Special Issue Crop Productivity and Management in Agricultural Systems)
Show Figures

Figure 1

20 pages, 2494 KB  
Article
Investigating Hybrid PLGA-Lipid Nanoparticles as an Innovative Delivery Tool for Palmitoylethanolamide to Muscle Cells
by Eleonora Maretti, Susanna Molinari, Sonia Partel, Beatrice Recchia, Cecilia Rustichelli and Eliana Leo
Pharmaceutics 2025, 17(11), 1412; https://doi.org/10.3390/pharmaceutics17111412 - 30 Oct 2025
Viewed by 416
Abstract
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) [...] Read more.
Background/Objectives: Palmitoylethanolamide (PEA) is an endogenous lipid mediator with endocannabinoid-like activity. Despite its therapeutic potential in muscle-related inflammatory disorders, including sarcopenia, its clinical use is limited by poor solubility and bioavailability. To overcome these issues, we developed hybrid nanoparticles combining poly(lactic-co-glycolic acid) (PLGA) and lipids to enhance PEA encapsulation and ok delivery. Methods: PEA-loaded hybrid nanoparticles (PEA-Hyb-np) were produced via a modified single-emulsion solvent evaporation method using stearic acid and Gelucire® 50/13 as lipid components. Characterization included particle size, morphology, PDI, and zeta potential, as well as DSC, FT-IR, and XRD analyses. For the biological evaluation in a C2C12 myoblasts cell culture, coumarin-6-labeled nanoparticles were employed. Results: PEA-Hyb-np showed mean particle sizes of ~150 nm, with internal lipid–polymer phase separation. This structure enabled high encapsulation efficiency (79%) and drug loading (44.2 mg/g). Drug release in physiological and non-physiological media was enhanced due to drug amorphization, confirmed by DSC, FT-IR, and XRD analyses. Cytocompatibility studies showed no toxicity and improved cell viability compared to unloaded nanoparticles. Cellular uptake studies by confocal microscopy and flow cytometry demonstrated efficient and time-dependent internalization. Conclusions: PEA-Hyb-np represent a promising delivery platform to improve the solubility, bioavailability, and therapeutic efficacy of PEA for muscle-targeted applications. Full article
Show Figures

Graphical abstract

19 pages, 464 KB  
Review
Clitoria ternatea: Perspectives on Its Application in Foods and Potential Health Benefits
by Nicole Marina Almeida Maia, Irene Andressa, Jeferson Silva Cunha, Nataly de Almeida Costa, Eduardo Basílio de Oliveira, Bruno Ricardo de Castro Leite Júnior and Érica Nascif Rufino Vieira
Plants 2025, 14(21), 3322; https://doi.org/10.3390/plants14213322 - 30 Oct 2025
Viewed by 616
Abstract
In recent years, edible flowers have gained increasing attention as unconventional foods, primarily due to their richness in bioactive compounds. Within this context, Clitoria ternatea L. (Fabaceae), commonly known as butterfly pea, stands out not only for its remarkable biological properties but also [...] Read more.
In recent years, edible flowers have gained increasing attention as unconventional foods, primarily due to their richness in bioactive compounds. Within this context, Clitoria ternatea L. (Fabaceae), commonly known as butterfly pea, stands out not only for its remarkable biological properties but also for its intense blue pigmentation. This review aims to provide a comprehensive overview of the plant’s potential in the food industry, highlighting its bioactive compounds, technological applications, and associated health benefits. Recent studies have demonstrated its antioxidant, antidiabetic, anti-obesity, hepatoprotective, and anticancer activities, as well as its use as a natural colorant, functional ingredient, active packaging component, and in nutraceutical and cosmetic formulations. Despite these promising findings, most available evidence comes from preclinical studies, with limited clinical validation to date. Therefore, further human studies are needed to confirm the efficacy and safety of the reported beneficial effects. Altogether, C. ternatea represents a promising natural resource for developing functional foods that meet the growing clean-label demand, fostering the incorporation of sustainable and natural ingredients. Full article
(This article belongs to the Special Issue Natural Products in Plants: Synthesis, Analysis and Bioactivity)
Show Figures

Figure 1

18 pages, 1754 KB  
Article
Qualitative Characteristics of Semolina–Pulse Flour Mixes and Related Breads
by Michele Canale, Rosalia Sanfilippo, Salvatore Moscaritolo, Maria Carola Fiore, Maria Concetta Strano, Maria Allegra, Giancarlo Fascella, Giovanni Gugliuzza and Alfio Spina
Foods 2025, 14(21), 3720; https://doi.org/10.3390/foods14213720 - 30 Oct 2025
Viewed by 391
Abstract
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological [...] Read more.
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological properties of flours, doughs, and breads. Combining pulse flours with durum wheat semolina allows for improved dough handling and processing performance, leveraging the functional properties of both ingredients. Water absorption increased with pulse flour addition (average 1.90 g H2O/g dry matter), though higher levels of yellow pea and grass pea reduced it. Color changes were most evident with common bean flour. Leavening rates varied, reaching 144% after 60 min with 30% yellow pea and 68.75% after 40 min with 30% common bean. Rheological results indicated longer dough development and stability times but reduced strength and extensibility, with higher tenacity. Bread volume decreased from 276.25 cm3 (control) to 208.75 cm3 (40% common bean). Crumb porosity declined, particularly with common bean flour, producing smaller pores. Grass pea flour promoted browning, enhancing color contrast. Texture analysis showed harder, more gum-like breads with higher chew resistance: hardness ranged from 15.85 N (20% common bean) to 30.45 N (40% yellow pea). Gumminess and chewiness increased, while cohesiveness decreased. Overall, pulse flour integration alters bread quality, yet represents a promising approach to creating healthier, functional, baked products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

Back to TopTop