Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = PV temperature measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6206 KB  
Article
PV-Scope Test System: Photovoltaic Module Characterization with Maximum Power, Efficiency, and Environmental Sensing
by Christi K. Madsen and Bitian Jiang
Electronics 2025, 14(21), 4305; https://doi.org/10.3390/electronics14214305 - 31 Oct 2025
Viewed by 298
Abstract
An integrated ESP32-based measurement system called PV-Scope is presented for real-time photovoltaic (PV) module efficiency characterization and small off-grid system testing under field conditions. The system includes pyranometer-calibrated irradiance sensors using a solar simulator, maximum power point tracking, and comprehensive environmental monitoring to [...] Read more.
An integrated ESP32-based measurement system called PV-Scope is presented for real-time photovoltaic (PV) module efficiency characterization and small off-grid system testing under field conditions. The system includes pyranometer-calibrated irradiance sensors using a solar simulator, maximum power point tracking, and comprehensive environmental monitoring to enable accurate performance assessment of PV modules across diverse technologies, manufacturers and installation conditions. Unlike standard test condition (STC) measurements at cell temperatures of 25 °C, this system captures the interactions between efficiency and environmental variables that significantly impact real-world efficiency. In particular, measurement of temperature-dependent efficiency under local conditions and validation of temperature-dependent models for extending the results to other environmental conditions are enabled with cell temperature monitoring in addition to ambient temperature, humidity, and wind speed. PV-Scope is designed for integrated sensing versatility, portable outdoor testing, and order-of-magnitude cost savings compared to commercial equipment to meet measurement needs across research, education, and practical PV innovation, including bifacial module testing, assessment of cooling techniques, tandem and multi-junction testing, and agrivoltaics. Full article
Show Figures

Figure 1

40 pages, 11053 KB  
Article
Novel Hybrid Analytical-Metaheuristic Optimization for Efficient Photovoltaic Parameter Extraction
by Abdelkader Mekri, Abdellatif Seghiour, Fouad Kaddour, Yassine Boudouaoui, Aissa Chouder and Santiago Silvestre
Electronics 2025, 14(21), 4294; https://doi.org/10.3390/electronics14214294 - 31 Oct 2025
Viewed by 223
Abstract
Accurate extraction of single-diode photovoltaic (PV) model parameters is essential for reliable performance prediction and diagnostics, yet five-parameter identification from I-V data is ill-posed and computationally expensive. To develop and validate a hybrid analytical–metaheuristic approach that derives the diode ideality factor, saturation current, [...] Read more.
Accurate extraction of single-diode photovoltaic (PV) model parameters is essential for reliable performance prediction and diagnostics, yet five-parameter identification from I-V data is ill-posed and computationally expensive. To develop and validate a hybrid analytical–metaheuristic approach that derives the diode ideality factor, saturation current, and photocurrent analytically while optimizing only series and shunt resistances, thereby reducing computational cost without sacrificing accuracy. I-V datasets were collected from a 9.54 kW grid-connected PV installation in Algiers, Algeria (15 operating points; 747–815 W m−2; 25.4–28.4 °C). Nine metaheuristics—Stellar Oscillation Optimizer, Enzyme Action Optimization, Grey Wolf Optimizer, Whale Optimization Algorithm, Cuckoo Search, Owl Search Algorithm, Improved War Strategy Optimization, Rüppell’s Fox Optimizer, and Artificial Bee Colony—were benchmarked against full five-parameter optimization and a Newton–Raphson baseline, using root-mean-squared error (RMSE) as the objective and wall-time as the efficiency metric. The hybrid scheme reduced the decision space from five to two parameters and lowered computational cost by ≈60–70% relative to full-parameter optimization while closely reproducing measured I-V/P-V curves. Across datasets, algorithms achieved RMSE ≈ 2.49 × 10−2 − 2.78 × 10−2. Rüppell’s Fox Optimizer offered the best overall trade-off (lowest average RMSE and fastest runtime), with Whale Optimization Algorithm a strong alternative (typical runtimes ≈ 107–112 s). Partitioning identification between closed-form physics and light-weight optimization yields robust, accurate, and efficient PV parameter estimation suitable for time-sensitive or embedded applications. Dynamic validation using 1498 real-world measurements across clear-sky and cloudy conditions demonstrates excellent performance: current prediction R2=0.9882, power estimation R2=0.9730, and voltage tracking R2=0.9613. Comprehensive environmental analysis across a 39.2 °C temperature range and diverse irradiance conditions (01014 W/m2) validates the method’s robustness for practical PV monitoring applications. Full article
Show Figures

Figure 1

43 pages, 10093 KB  
Article
A Novel Red-Billed Blue Magpie Optimizer Tuned Adaptive Fractional-Order for Hybrid PV-TEG Systems Green Energy Harvesting-Based MPPT Algorithms
by Al-Wesabi Ibrahim, Abdullrahman A. Al-Shamma’a, Jiazhu Xu, Danhu Li, Hassan M. Hussein Farh and Khaled Alwesabi
Fractal Fract. 2025, 9(11), 704; https://doi.org/10.3390/fractalfract9110704 - 31 Oct 2025
Viewed by 467
Abstract
Hybrid PV-TEG systems can harvest both solar electrical and thermoelectric power, but their operating point drifts with irradiance, temperature gradients, partial shading, and load changes—often yielding multi-peak P-V characteristics. Conventional MPPT (e.g., P&O) and fixed-structure integer-order PID struggle to remain fast, stable, and [...] Read more.
Hybrid PV-TEG systems can harvest both solar electrical and thermoelectric power, but their operating point drifts with irradiance, temperature gradients, partial shading, and load changes—often yielding multi-peak P-V characteristics. Conventional MPPT (e.g., P&O) and fixed-structure integer-order PID struggle to remain fast, stable, and globally optimal in these conditions. To address fast, robust tracking in these conditions, we propose an adaptive fractional-order PID (FOPID) MPPT whose parameters (Kp, Ki, Kd, λ, μ) are auto-tuned by the red-billed blue magpie optimizer (RBBMO). RBBMO is used offline to set the controller’s search ranges and weighting; the adaptive law then refines the gains online from the measured ΔV, ΔI slope error to maximize the hybrid PV-TEG output. The method is validated in MATLAB R2024b/Simulink 2024b, on a boost-converter–interfaced PV-TEG using five testbeds: (i) start-up/search, (ii) stepwise irradiance, (iii) partial shading with multiple local peaks, (iv) load steps, and (v) field-measured irradiance/temperature from Shanxi Province for spring/summer/autumn/winter. Compared with AOS, PSO, MFO, SSA, GHO, RSA, AOA, and P&O, the proposed tracker is consistently the fastest and most energy-efficient: 0.06 s to reach 95% MPP and 0.12 s settling at start-up with 1950 W·s harvested (vs. 1910 W·s AOS, 1880 W·s PSO, 200 W·s P&O). Under stepwise irradiance, it delivers 0.95–0.98 kJ at t = 1 s and under partial shading, 1.95–2.00 kJ, both with ±1% steady ripple. Daily field energies reach 0.88 × 10−3, 2.95 × 10−3, 2.90 × 10−3, 1.55 × 10−3 kWh in spring–winter, outperforming the best baselines by 3–10% and P&O by 20–30%. Robustness tests show only 2.74% power derating across 0–40 °C and low variability (Δvmax typically ≤ 1–1.5%), confirming rapid, low-ripple tracking with superior energy yield. Finally, the RBBMO-tuned adaptive FOPID offers a superior efficiency–stability trade-off and robust GMPP tracking across all five cases, with modest computational overhead. Full article
Show Figures

Figure 1

17 pages, 1666 KB  
Article
Evaluating PWM Solar Charge Regulators for Off-Grid Solar PV Street Lighting Systems Using Linear Regression Approach
by Sandile Phillip Koko, Mbuyu Sumbwanyambe and Xolani Phillips Yokwana
Energies 2025, 18(21), 5646; https://doi.org/10.3390/en18215646 - 28 Oct 2025
Viewed by 307
Abstract
The global adoption of solar-powered streetlights has grown significantly, driven by their cost-effectiveness and potential to reduce dependence on fossil fuels associated with conventional street lighting. Battery storage represents a substantial portion of the total capital cost in solar-powered streetlight systems. Therefore, selecting [...] Read more.
The global adoption of solar-powered streetlights has grown significantly, driven by their cost-effectiveness and potential to reduce dependence on fossil fuels associated with conventional street lighting. Battery storage represents a substantial portion of the total capital cost in solar-powered streetlight systems. Therefore, selecting an efficient charge regulator is crucial to protect battery lifespan and reduce energy losses. In this context, the choice of an appropriate charge regulator plays a vital role in enhancing system reliability and overall performance. This study presents a practical approach for evaluating three commercially available 6 A-rated Pulse Width Modulation (PWM) solar charge regulators intended for recharging lead-acid batteries in a proposed 12 V off-grid solar photovoltaic (PV) street lighting system. The regulators were evaluated concurrently in separate circuits, each experiencing similar meteorological conditions, including similar temperature and solar irradiance. The measured data for each regulator were acquired using LabVIEW-based virtual instruments. The performance comparison was conducted using the Linear Regression Algorithm (LRA) to support decision-making. Based on the analysis, the most suitable PWM charge regulator was identified as the one offering the best charging performance due to low internal losses. Hence, solar battery charge regulators with identical load current ratings do not necessarily deliver equivalent charge/discharge performance. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 2389 KB  
Article
Experimental Study on the Heat Dissipation of Photovoltaic Panels by Spiral Coil Cold Plates
by Ruofei Tian, Yan Liu and Shuailing Ma
Energies 2025, 18(21), 5603; https://doi.org/10.3390/en18215603 - 24 Oct 2025
Viewed by 269
Abstract
Photovoltaic/Thermal (PV/T) systems are a technology designed to simultaneously convert solar energy into both electrical and thermal energy. The overall conversion efficiency of these systems can be significantly enhanced by effectively cooling the photovoltaic (PV) module. To this end, this paper presents a [...] Read more.
Photovoltaic/Thermal (PV/T) systems are a technology designed to simultaneously convert solar energy into both electrical and thermal energy. The overall conversion efficiency of these systems can be significantly enhanced by effectively cooling the photovoltaic (PV) module. To this end, this paper presents a comparative experimental study of a PV panel under three distinct configurations: operating with a no cold plate, with an ordinary cold plate, and with a spiral coil cold plate. The system’s photo-thermoelectric efficiency was evaluated by measuring key parameters, including the PV panel’s surface temperature, electrical power output, and the water tank temperature. The results indicate that the spiral coil configuration demonstrated a marked superiority in temperature regulation over the baseline case, achieving a maximum temperature reduction of 13.8 °C and an average reduction of 10.74 °C. Furthermore, a stable temperature drop exceeding 10 °C was maintained for 74.07% of the experimental duration. When compared to the ordinary cold plate, the spiral coil configuration continued to exhibit superior performance, delivering maximum and average temperature drops of 3.6 °C and 2.16 °C, respectively, while sustaining a cooling advantage of over 2 °C for 66.67% of the test period. These findings conclusively demonstrate that the spiral coil cold plate is the most effective configuration for enhancing the system’s overall performance. Full article
Show Figures

Figure 1

33 pages, 1228 KB  
Review
Influence of Long-Term and Short-Term Solar Radiation and Temperature Exposure on the Material Properties and Performance of Photovoltaic Panels: A Comprehensive Review
by Daruez Afonso, Oumaima Mesbahi, Amal Bouich and Mouhaydine Tlemçani
Energies 2025, 18(19), 5072; https://doi.org/10.3390/en18195072 - 24 Sep 2025
Viewed by 1136
Abstract
This review provides a comprehensive synthesis of the coupled effect of temperature and solar radiation on photovoltaic (PV) module performance and lifespan. Although numerous investigations have examined these stressors in themselves, this research addresses their interrelationship and evaluates the way climatic conditions affect [...] Read more.
This review provides a comprehensive synthesis of the coupled effect of temperature and solar radiation on photovoltaic (PV) module performance and lifespan. Although numerous investigations have examined these stressors in themselves, this research addresses their interrelationship and evaluates the way climatic conditions affect short-term performance fluctuation and long-term degradation mechanisms. The assessment consolidates outcomes from model strategies, laboratory tests, and field monitoring studies. Through the presentation of these findings in a narrative form, the paper identifies recurring difficulties in terms of the absence of shared assessment metrics and the low level of standardisation of long-term test regimes. Second, it underlines the importance of predictive modelling and live monitoring as important management tools for coupled stressors. Finally, the review points out research gaps and underscores future research avenues, including ongoing work towards the development of a coupling index, a composite measure being piloted in individual studies, and advancements in materials technology, predictive methodology, and durability testing. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

9 pages, 2591 KB  
Article
A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings
by Amal Kabalan, Colton Jiorle and Abdelghany Abouelnagga
Electronics 2025, 14(19), 3771; https://doi.org/10.3390/electronics14193771 - 24 Sep 2025
Viewed by 549
Abstract
This project introduces an add-on device that monitors key data points essential for evaluating the daily performance of a photovoltaic (PV) array. It is designed for homeowners who are transitioning to solar energy for economic or environmental benefits. The goal is to enhance [...] Read more.
This project introduces an add-on device that monitors key data points essential for evaluating the daily performance of a photovoltaic (PV) array. It is designed for homeowners who are transitioning to solar energy for economic or environmental benefits. The goal is to enhance the operational understanding for users by offering a smart system capable of detecting inefficiencies, especially for users with limited technical knowledge of PV components. The device measures five parameters: light intensity, temperature, humidity, current, and voltage. These metrics have been successfully integrated and are fully operational. This paper details the electronic design, hardware prototype, and data collected to validate the system’s performance. Full article
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Numerical Assessment of Electric Underfloor Heating Enhanced by Photovoltaic Integration
by Hana Charvátová, Aleš Procházka, Martin Zálešák and Vladimír Mařík
Sensors 2025, 25(18), 5916; https://doi.org/10.3390/s25185916 - 22 Sep 2025
Viewed by 612
Abstract
The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations [...] Read more.
The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations were employed to evaluate underfloor heating performance using three electricity sources: standard electric supply, solar-generated energy, and a combined configuration. Solar irradiance sensors were utilized to collect input solar radiation data, which served as a critical parameter for numerical modeling and simulations. The set outdoor air temperature used in the analysis represents an average value calculated from data measured by environmental sensors at the location of the building during the monitored period. Key metrics included indoor air temperature, time to thermal stability, and heat loss relative to outdoor conditions. The combined electric and solar-powered system demonstrated thermal efficiency, improving indoor air temperature by up to 63.6% compared to an unheated room and achieving thermal stability within 22 h. Solar-only configuration showed moderate improvements. Heat loss analysis revealed a strong correlation with indoor–outdoor temperature differentials. Hybrid underfloor heating systems integrating PV panels significantly enhance indoor thermal comfort and energy efficiency. These findings support the adoption of renewable energy technologies in residential heating, contributing to sustainable energy transitions. Full article
Show Figures

Figure 1

13 pages, 3074 KB  
Article
Fish Oil Oleogels with Wax and Fatty Acid Gelators: Effects on Microstructure, Thermal Behaviour, Viscosity, and Oxidative Stability
by Le Thuy Truong, Wilhelm Robert Glomm and Peter Patrick Molesworth
Gels 2025, 11(9), 723; https://doi.org/10.3390/gels11090723 - 10 Sep 2025
Viewed by 1796
Abstract
Encapsulation of fish oil within oleogels can potentially prevent oxidation and enable its use in food with programmable release within the gastrointestinal tract. Here, we report on the formation of oleogels from two different fish oils—salmon oil (SO) and cod liver oil (CLO)—using [...] Read more.
Encapsulation of fish oil within oleogels can potentially prevent oxidation and enable its use in food with programmable release within the gastrointestinal tract. Here, we report on the formation of oleogels from two different fish oils—salmon oil (SO) and cod liver oil (CLO)—using different concentrations of either rice bran wax (RBW) or myristic acid (MA) as gelators. The gels were assessed with respect to their structural, thermal, viscosity, digestive, and oxidative properties. Polarized light microscopy (POM) revealed that RBW consistently produced dense, interconnected crystalline networks across both oils, while MA formed larger, spherulitic crystals that were more sensitive to the oil type. This was further supported by time-lapse imaging, showing faster crystal growth of MA in cod liver oil. Viscosity studies indicate that the molecular weight and concentration of gelator, as well as the type of fish oil (SO vs. CLO), significantly impact the shear stability of the oleogels. Thermal and viscosity analyses confirmed that RBW-based oleogels exhibited higher crystallization temperatures and stronger viscoelastic behaviour. Based on oxidative stability measurements—as measured by peroxide value (PV) analysis—encapsulation within oleogels does not lead to significant oxidation of the fish oils and also attenuates further oxidation upon storage. The fish oil oleogels were stable when exposed to either simulated gastric or intestinal fluids (SGF and SIF, respectively), but decomposed after sequential exposure first to SGF and then to SIF. These findings could broaden the range of food products which can be fortified with fish oils. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

27 pages, 10443 KB  
Article
Bifacial Solar Modules Under Real Operating Conditions: Insights into Rear Irradiance, Installation Type and Model Accuracy
by Nairo Leon-Rodriguez, Aaron Sanchez-Juarez, Jose Ortega-Cruz, Camilo A. Arancibia Bulnes and Hernando Leon-Rodriguez
Eng 2025, 6(9), 233; https://doi.org/10.3390/eng6090233 - 8 Sep 2025
Cited by 1 | Viewed by 1089
Abstract
Bifacial Photovoltaic (bPV) technology is rapidly becoming the standard in the solar photovoltaic (PV) industry due to its ability to capture reflected radiation and generate additional energy. This experimental study analyses the electrical performance of bPV modules under specific installation conditions, including varying [...] Read more.
Bifacial Photovoltaic (bPV) technology is rapidly becoming the standard in the solar photovoltaic (PV) industry due to its ability to capture reflected radiation and generate additional energy. This experimental study analyses the electrical performance of bPV modules under specific installation conditions, including varying heights, module tilt angles (MTA), and surface reflectivity. The methodology combines controlled indoor testing with outdoor experiments that replicate real-world operating environments. The outdoor test setup was carefully designed and included dual data acquisition systems: one with independent sensors and another with wireless telemetry for data transfer from the inverter. A thermal performance model was used to estimate energy output and was benchmarked against experimental measurements. All electrical parameters were obtained in accordance with international standards, including current-voltage characteristic (I–V curve) corrections, using calibrated instruments to monitor irradiance and temperature. Indoor measurements under Standard Test Conditions yielded at bifaciality coefficient φ=0.732, a rear bifacial power gain BiFi=0.285, and a relative bifacial gain BiFirel=9.4%. The outdoor configuration employed volcanic red stone (Tezontle) as a reflective surface, simulating a typical mid-latitude installation with modules mounted 1.5 m above ground, tilted from 0° to 90° regarding floor and oriented true south. The study was conducted at a site located at 18.8° N latitude during the early summer season. Results revealed significant non-uniformity in rear-side irradiance, with a 32% variation between the lower edge and the centre of the bPV module. The thermal model used to determine electrical performance provides power values higher than those measured in the time interval between 10 a.m. and 3 p.m. Maximum energy output was observed at a MTA of 0°, which closely aligns with the optimal summer tilt angle for the site’s latitude. Bifacial energy gain decreased as the MTA increased from 0° to 90°. These findings offer practical, data-driven insights for optimizing bPV installations, particularly in regions between 15° and 30° north latitude, and emphasize the importance of tailored surface designs to maximize performance. Full article
Show Figures

Graphical abstract

25 pages, 3162 KB  
Article
Quantifying the Impact of Soiling and Thermal Stress on Rooftop PV Performance: Seasonal Analysis from an Industrial Urban Region in Türkiye
by Okan Uykan, Güray Çelik and Aşkın Birgül
Sustainability 2025, 17(17), 8038; https://doi.org/10.3390/su17178038 - 6 Sep 2025
Cited by 1 | Viewed by 1695
Abstract
This study presents a novel framework to assess the combined impact of soiling and thermal effects on rooftop PV systems through multi-seasonal, multi-site field campaigns in an industrial-urban environment. This work addresses key research gaps by providing a high-resolution, site-specific analysis that captures [...] Read more.
This study presents a novel framework to assess the combined impact of soiling and thermal effects on rooftop PV systems through multi-seasonal, multi-site field campaigns in an industrial-urban environment. This work addresses key research gaps by providing a high-resolution, site-specific analysis that captures the synergistic effect of particulate accumulation and thermal stress on PV performance in an industrial-urban environment—a setting distinct from the well-studied arid climates. The study further bridges a gap by employing controlled pre- and post-cleaning performance tests across multiple sites to isolate and quantify soiling losses, offering insights crucial for developing targeted maintenance strategies in pollution-prone urban areas. Unlike previous work, it integrates gravimetric soiling measurements with high-resolution electrical (I–V), thermal, and environmental monitoring, complemented by PVSYST simulation benchmarking. Field data were collected from five rooftop plants in Bursa, Türkiye, during summer and winter, capturing seasonal variations in particulate deposition, module temperature, and PV output, alongside irradiance, wind speed, and airborne particulates. Soiling nearly doubled in winter (0.098 g/m2) compared to summer (0.051 g/m2), but lower winter temperatures (mean 19.8 °C) partially offset performance losses seen under hot summer conditions (mean 42.1 °C). Isc correlated negatively with both soiling (r = −0.68) and temperature (r = −0.72), with regression analysis showing soiling as the dominant factor (R2 = 0.71). Energy yield analysis revealed that high summer irradiance did not always increase output due to thermal losses, while winter often yielded comparable or higher energy. Soiling-induced losses ranged 5–17%, with SPP-2 worst affected in winter, and seasonal PR declines averaged 10.8%. The results highlight the need for integrated strategies combining cleaning, thermal management, and environmental monitoring to maintain PV efficiency in particulate-prone regions, offering practical guidance for operators and supporting renewable energy goals in challenging environments. Full article
Show Figures

Figure 1

14 pages, 12065 KB  
Article
Comparing Outdoor to Indoor Performance for Bifacial Modules Affected by Polarization-Type Potential-Induced Degradation
by Dylan J. Colvin, Cécile Molto, Ryan M. Smith, Manjunath Matam, Peter Hacke, Fang Li, Brent A. Thompson, James Barkaszi, Govindasamy Tamizhmani and Hubert P. Seigneur
Solar 2025, 5(3), 43; https://doi.org/10.3390/solar5030043 - 4 Sep 2025
Viewed by 783
Abstract
Bifacial photovoltaic (PV) modules have the advantage of using light reflected off of the ground to contribute to power production. Predicting the energy gain is challenging and requires complex models to do so accurately. Often, module degradation over time is neglected in models [...] Read more.
Bifacial photovoltaic (PV) modules have the advantage of using light reflected off of the ground to contribute to power production. Predicting the energy gain is challenging and requires complex models to do so accurately. Often, module degradation over time is neglected in models for the sake of simplicity or is underestimated. Comparing outdoor and indoor current–voltage (I–V) performance for bifacial modules is more challenging than for monofacial modules, as there are additional variables to consider such as rear albedo non-uniformity, cell mismatch, and their effects on temperature. This challenge is compounded when heterogeneous degradation modes occur, such as polarization-type potential-induced degradation (PID-p). To examine the effects of PID-p on I–V predictions using an empirical data-driven approach, 16 bifacial PERC modules are installed outdoors on racks with different albedo conditions. A subset is exposed to high-voltage biases of −1500 V or +1500 V. Outdoor data are traced at irradiance ranges of 150–250 W/m2, 500–600 W/m2, and 900–1000 W/m2. These curves are corrected using control module temperature, wire resistivity, and module resistance measured indoors. We examine several methods to transform indoor I–V curves to accurately, and more simply than existing methods, approximate outdoor performance for bifacial modules without and with varying levels of PID-p degradation. This way, bifacial performance modeling can be more accessible and informed by fielded, degraded modules. Distributions of percent errors between indoor and outdoor performance parameters and Mean Absolute Percent Errors (MAPEs) are used to assess method quality. Results including low-irradiance data (150–250 W/m2) are discussed but are filtered for quantifying method quality as these data introduce substantial errors. The method with the most optimal tradeoff between low MAPE and analysis simplicity involves measuring the front side of a module indoors at an irradiance equal to plane-of-array irradiance plus the product of module bifaciality and albedo irradiance. This method gives MAPE values of 1–6.5% for non-degraded and 1.6–5.9% for PID-p degraded module performance. Full article
Show Figures

Figure 1

23 pages, 5883 KB  
Article
Microclimatic Effects of Retrofitting a Green Roof Beneath an East–West PV Array: A Two-Year Field Study in Austria
by Leonie Möslinger, Erich Streit, Azra Korjenic and Abdulah Sulejmanoski
Sustainability 2025, 17(16), 7495; https://doi.org/10.3390/su17167495 - 19 Aug 2025
Viewed by 962
Abstract
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic [...] Read more.
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic effects of retrofitting an extensive green roof beneath such an existing PV array. Over a two-year period, continuous measurements of sub-panel air temperature, relative humidity, and module surface temperature were conducted. Results show that the green roof reduced average midday sub-panel air temperatures by 1.7–2.2 °C, with peak reductions up to 8 °C during summer, while nighttime temperatures were higher above the green roof. Relative humidity increased by up to 8.1 percentage points and module surface temperatures beneath the green roof were lowered by 0.4–1.5 °C, though with greater variability. Computational fluid dynamics simulations confirmed that evaporative cooling was spatially confined beneath the panels and highlighted the influence of structural features on airflow and convective cooling. Despite limited vegetation beneath the panels, the green roof retained moisture longer than the gravel roof, resulting in particularly strong cooling effects in the days following rainfall. The study highlights the retrofitting potential for improving rooftop climates, while showing key design recommendations for enhanced system performance. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 925
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

13 pages, 2940 KB  
Article
Extraction and Characterization of the Functional Properties of Starch from Miso (Mirabilis expansa [Ruíz & Pav.] Standl.): A Non-Conventional Source
by Santiago Cadena-Carrera, Vanessa Peñafiel, Esteban Fuentes, Lorena Núñez, Gabriela Vaca and Deise Tramontin
Processes 2025, 13(8), 2552; https://doi.org/10.3390/pr13082552 - 13 Aug 2025
Viewed by 698
Abstract
Mirabilis expansa root (MER) is an Andean source of starch that could be considered a “lost crop” by the scarcity of its cultivation. Consequently, few studies have reported on its functional properties. To address this gap, we herein analyze and characterize the main [...] Read more.
Mirabilis expansa root (MER) is an Andean source of starch that could be considered a “lost crop” by the scarcity of its cultivation. Consequently, few studies have reported on its functional properties. To address this gap, we herein analyze and characterize the main components of MER and Mirabilis expansa starch (MES), measuring the water-absorption index (WAI), swelling power (SP), and water solubility index (WSI). We characterized the MES morphological and structural properties by using scanning electron microscopy (SEM). We also examined the starch pasting properties using a Rapid Visco Analyzer (RVA) to determine the peak viscosity (PV), final viscosity (FV), pasting temperature (PT), breakdown (BD), and setback (SB). The thermal properties were determined by differential scanning calorimetry (DSC), the crystallinity by X-ray diffraction, and the molecular structure by Fourier transform infrared spectrometry (FTIR). The main components in the MER and MES were carbohydrates and crude fiber. The MES appeared rich in amylopectin. The functional properties, the WAI, SP, and WSI, were dependent on temperature. The MES showed no morphological changes, a moderate gelatinization temperature, and C-type crystallinity. Finally, the FTIR spectrum presented the typical form for an unmodified starch. Based on these results, Mirabilis expansa may be considered a natural, non-conventional source of starch with potential applications in the food, chemical, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Pharmaceutical Potential and Application Research of Natural Products)
Show Figures

Figure 1

Back to TopTop