Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Paspalum scrobiculatum L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
1 pages, 139 KB  
Abstract
Potential Risk of Cyclopiazonic Acid Toxicity in Kodo Millet (Paspalum scrobiculatum L.) Poisoning
by Lakkur Sannaiah Mamatha Bhanu
Proceedings 2024, 102(1), 27; https://doi.org/10.3390/proceedings2024102027 - 3 Apr 2024
Viewed by 1270
Abstract
Kodo millet, a staple food in North India, is frequently consumed, but its consumption can lead to intoxication and poisoning. Kodo millet is a rich source of nutrition, with anti-oxidant and medicinal properties, and is typically cultivated in dry and semi-arid regions. It [...] Read more.
Kodo millet, a staple food in North India, is frequently consumed, but its consumption can lead to intoxication and poisoning. Kodo millet is a rich source of nutrition, with anti-oxidant and medicinal properties, and is typically cultivated in dry and semi-arid regions. It is often infected by fungal species rather than bacterial and virus pathogens, causing economic crop loss and adversely affecting grain and fodder yield. Ergot, a parasitic fungal endophyte found in Kodo millet ear heads, can cause poisoning when consumed. Moreover, Kodo millet grains are frequently infested with Aspergillus tamarii Kita, which produces a significant amount of the mycotoxin cyclopiazonic acid (CPA). Cyclopiazonic acid (CPA) is a neurotoxin produced by certain A. flavus and Aspergillus oryzae strains, which produce aflatoxins. Mycotoxicosis outbreaks in humans are not well characterized, and the direct correlation between mycotoxin consumption and toxic effects In Vivo is not well established. CPA, a specific inhibitor of sarcoplasmic reticulum Ca2+-ATPase, can adversely affect broiler chicken health, as demonstrated by toxicological evaluation of aflatoxins and CPA alone or in combination. Most toxins have reported acute and chronic effects in prokaryotic and eukaryotic systems, including humans, despite thefact that their specific modes of action are unclear. This review explores fungal pathogens, the toxicity of CPA to animals and humans, both by itself and in combination with other mycotoxins, as well as biocontrol strategies and storage methods for better utilization of Kodo grains post harvest. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Toxics)
14 pages, 3399 KB  
Article
Optimization of Agrobacterium Mediated Genetic Transformation in Paspalum scrobiculatum L. (Kodo Millet)
by Ritika Bhatt, Prem Prakash Asopa, Rohit Jain, Aditi Kothari-Chajer, Shanker Lal Kothari and Sumita Kachhwaha
Agronomy 2021, 11(6), 1104; https://doi.org/10.3390/agronomy11061104 - 28 May 2021
Cited by 20 | Viewed by 5192
Abstract
An efficient and reproducible protocol for Agrobacterium tumefaciens mediated genetic transformation was developed for kodo millet (Paspalum scrobiculatum L.) by optimizing various parameters. Agrobacterium strains EHA 105 and LBA 4404 harboring plasmids pCNL 56 and pCAMBIA 2300, respectively, provided the highest transformation [...] Read more.
An efficient and reproducible protocol for Agrobacterium tumefaciens mediated genetic transformation was developed for kodo millet (Paspalum scrobiculatum L.) by optimizing various parameters. Agrobacterium strains EHA 105 and LBA 4404 harboring plasmids pCNL 56 and pCAMBIA 2300, respectively, provided the highest transformation efficiency. Addition of acetosyringone (AS) in infection medium (200 µM-EHA 105, 250 µM-LBA 4404) and co-cultivation medium (50 µM) increased the transformation efficiency. Transient and stable expression of gus gene was confirmed with histochemical assay of infected embryos and leaves of transformed plants, respectively. The best GUS response was obtained by pretreatment of callus with an antinecrotic mixture (10 mg/L Cys + 5 mg/L Ag + 2.5 mg/L As) at infection time of 20 min followed by co-cultivation for 3 days (EHA 105) and 5 days (LBA 4404) in dark. Regenerated transgenic plants were obtained after 8 to 10 weeks of selection on callus induction medium (NAA 0.5 mg/L, BAP 1 mg/L) containing 50 mg/L Kan + 250 mg/L Cef and were rooted for 2 weeks on MS medium containing PAA (1 mg/L) and phytagel. The plantlets established in greenhouse showed normal growth. Therefore, the protocol developed in the present study can be used for development of improved varieties of kodo millet. Full article
Show Figures

Figure 1

21 pages, 2659 KB  
Article
Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities
by Ratna Prabha, Dhananjaya P. Singh, Shailendra Gupta, Vijai Kumar Gupta, Hesham A. El-Enshasy and Mukesh K. Verma
Microorganisms 2019, 7(12), 608; https://doi.org/10.3390/microorganisms7120608 - 23 Nov 2019
Cited by 24 | Viewed by 7118
Abstract
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum [...] Read more.
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions. Full article
(This article belongs to the Special Issue Plant Microbial Interactions)
Show Figures

Graphical abstract

Back to TopTop