Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Platylepadidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9610 KB  
Article
Ghosts of the Holobiont: Borings on a Miocene Turtle Carapace from the Pisco Formation (Peru) as Witnesses of Ancient Symbiosis
by Alberto Collareta, Rafael Varas-Malca, Giulia Bosio, Mario Urbina and Giovanni Coletti
J. Mar. Sci. Eng. 2023, 11(1), 45; https://doi.org/10.3390/jmse11010045 - 29 Dec 2022
Cited by 10 | Viewed by 4438
Abstract
In spite of the widespread occurrence of epibiotic turtle barnacles (Coronuloidea: Chelonibiidae and Platylepadidae) on extant marine turtles (Chelonioidea: Cheloniidae and Dermochelyidae), and although the association between these cirripedes and their chelonian hosts has existed for more than 30 million years, only a [...] Read more.
In spite of the widespread occurrence of epibiotic turtle barnacles (Coronuloidea: Chelonibiidae and Platylepadidae) on extant marine turtles (Chelonioidea: Cheloniidae and Dermochelyidae), and although the association between these cirripedes and their chelonian hosts has existed for more than 30 million years, only a few studies have investigated the deep past of this iconic symbiotic relationship on palaeontological grounds. We describe probable platylepadid attachment scars in the form of hemispherical/hemiellipsoidal borings on an Upper Miocene (Tortonian) fragmentary turtle carapace, identified herein as belonging to Cheloniidae, from the Pisco Lagerstätte (East Pisco Basin, southern Peru). When coupled with the available molecular data, this and other similar ichnofossils allow for hypothesising that platylepadid symbionts were hosted by sea turtles as early as in early Oligocene times and became relatively widespread during the subsequent Miocene epoch. Chelonian fossils that preserve evidence of colonisation by platylepadid epibionts in the form of pits on the turtle shell should be regarded as fossil holobionts, i.e., palaeontological witnesses of discrete communal ecological units formed by a basibiont and the associated symbionts (including the epibiota). A greater attention to the bone modifications that may be detected on fossil turtle bones is expected to contribute significantly to the emerging field of palaeosymbiology. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop