Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = Seoul virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2366 KB  
Article
Distribution and Genetic Characteristics of Seoul Virus in Different Organs of Rattus norvegicus
by Yamei Wei, Xiaodong Shi, Yanan Cai, Zhanying Han, Yanbo Zhang, Yonggang Xu, Xu Han and Qi Li
Viruses 2025, 17(3), 412; https://doi.org/10.3390/v17030412 - 14 Mar 2025
Viewed by 975
Abstract
To investigate the distribution of hantavirus (HV) in rodent organs, we selected eight counties across four regions in Hebei Province (southern, northern, eastern, and central) as study areas. Rodents were captured using night trapping methods, and organ samples were aseptically collected for HV [...] Read more.
To investigate the distribution of hantavirus (HV) in rodent organs, we selected eight counties across four regions in Hebei Province (southern, northern, eastern, and central) as study areas. Rodents were captured using night trapping methods, and organ samples were aseptically collected for HV detection via quantitative real-time PCR (qPCR) and gene sequencing. During the 2022–2023 spring and autumn seasons, 1386 rodents were trapped, including 73 Rattus norvegicus carrying Seoul virus (SEOV). The highest detection rate was observed in the liver (3.84%), followed by the kidneys (3.46%) and lungs (3.09%). Viral load analysis revealed higher SEOV RNA levels in the liver than in the lungs and kidneys. Antibody levels in R. norvegicus may influence the detection of viruses in organs. Phylogenetic analysis indicated that all sequences belonged to the S3 subtype, exhibiting regional aggregation and genetic stability. Our findings emphasize the necessity of multi-organ sampling for comprehensive HV surveillance and epidemic risk assessment. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

15 pages, 1977 KB  
Article
A Multi-Valent Hantavirus Vaccine Based on Recombinant Modified Vaccinia Ankara Reduces Viral Load in a Mouse Infection Model
by Marilyn Aram, Victoria Graham, Emma Kennedy, Emma Rayner, Roger Hewson and Stuart Dowall
Vaccines 2025, 13(3), 270; https://doi.org/10.3390/vaccines13030270 - 4 Mar 2025
Viewed by 1825
Abstract
Background: Old World orthohantaviruses are the aetiological agent of Haemorrhagic Fever with Renal Syndrome (HFRS) disease. Worldwide, the two most prominent pathogens of HFRS are Seoul orthohantavirus (SEOV) and Hantaan orthohantavirus (HTNV). There is currently no specific treatment nor widely licensed vaccine [...] Read more.
Background: Old World orthohantaviruses are the aetiological agent of Haemorrhagic Fever with Renal Syndrome (HFRS) disease. Worldwide, the two most prominent pathogens of HFRS are Seoul orthohantavirus (SEOV) and Hantaan orthohantavirus (HTNV). There is currently no specific treatment nor widely licensed vaccine form hantaviruses. Methods: This study developed a virus-vectored vaccine approach using modified vaccinia Ankara (MVA) incorporating a SEOV-HTNV chimeric nucleoprotein antigen. Results: The vaccine demonstrated the induction of humoral and cellular immunity. In the absence of a disease model, a reduction in the viral load of a susceptible mouse strain with type-I interferon receptor deficiency (A129) was used to ascertain protective effects after challenge with SEOV. Results demonstrated a significant reduction in and/or clearance of viral RNA in immunised animals. Conclusions: An MVA viral vector vaccine incorporating the nucleoprotein as antigen offers a promising approach for Hantavirus vaccine development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Figure 1

12 pages, 1565 KB  
Article
Prevalence, Characteristics, and Distribution of Human Papillomavirus According to Age and HIV Status in Women of Eastern Cape Province, South Africa
by Zizipho Z. A. Mbulawa, Sinazo Kondlo, Sinalo Toni, Lindiwe M. Faye and Charles B. Businge
Viruses 2024, 16(11), 1751; https://doi.org/10.3390/v16111751 - 8 Nov 2024
Cited by 3 | Viewed by 2329
Abstract
Human papillomavirus (HPV) is a sexually transmitted infection associated with the development of cervical cancer. This study investigated cervical HPV prevalence, characteristics, and distribution according to age and human immunodeficiency virus (HIV) status among women attending a public community health facility in the [...] Read more.
Human papillomavirus (HPV) is a sexually transmitted infection associated with the development of cervical cancer. This study investigated cervical HPV prevalence, characteristics, and distribution according to age and human immunodeficiency virus (HIV) status among women attending a public community health facility in the Eastern Cape Province of South Africa. A total of 325 participants (aged 18 to 60) visiting a community health facility for any reason were recruited. Cervical HPV infection was detected using the Seegene Anyplex™ II HPV28 assay (Seegene Inc., Seoul, South Korea). Overall HPV prevalence was 65.2% (95% CI: 59.9–70.2%), with the highest prevalence of 80.9% (95% CI: 67.2–89.8%) observed in the 18–25-year-old age group and the lowest prevalence of 46.3% (95% CI: 35.8–57.1%) in the 46–60-year-old age group. HR-HPV infection was found to decrease with increasing age (p < 0.001) in the overall population and according to HIV status. In contrast, LR-HPV infection was found to significantly decrease with age among HIV-negative women (p = 0.001) but not for the overall population and HIV-positive women. A proportion of 12.9% were infected with one or more HPV types covered by the Cervarix® HPV vaccine (HPV-16 and/or -18), 18.8% (by those covered by Gardasil®4 (HPV-6, -11, -16 and/or -18), and 42.2% by those covered by Gardasil®9 (HPV-6, -11, -16, -18, -31, -33, -45, -52 and/or -58). The alpha-9 HPV species was the most dominant species (40.6%), followed by the alpha-7 species (29.8%). High overall HPV, HR-HPV, and alpha-9 species prevalence were observed among the women attending the public health facility. These findings contribute to the limited HPV distribution data among the Eastern Cape women, which could be used to improve HPV-related policy and assess the effectiveness of the HPV vaccination. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 9316 KB  
Review
The Specificity of Epizootic and Epidemiological Processes in Natural Foci of Hemorrhagic Fever with Renal Syndrome and Tick-Borne Encephalitis in Russia, as the Basis for the Prospects of Creating a Combined Vaccine for the Prevention of These Infections
by Evgeniy Tkachenko, Alexandra Balkina, Dmitriy Trankvilevsky, Nadezda Kolyasnikova, Rostislav Teodorovich, Mikhail Vorovich, Yulia Popova, Svetlana Kurashova, Maria Egorova, Alla Belyakova, Petr Tkachenko, Aydar Ishmukhametov and Tamara Dzagurova
Viruses 2024, 16(8), 1292; https://doi.org/10.3390/v16081292 - 13 Aug 2024
Cited by 3 | Viewed by 2331
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and tick-borne encephalitis (TBE) are the most common viral diseases in Russia. HFRS is caused by six different types of hantaviruses: Hantaan, Amur, Seoul, Puumala, Kurkino, and Sochi, which are transmitted to humans through small mammals of [...] Read more.
Hemorrhagic fever with renal syndrome (HFRS) and tick-borne encephalitis (TBE) are the most common viral diseases in Russia. HFRS is caused by six different types of hantaviruses: Hantaan, Amur, Seoul, Puumala, Kurkino, and Sochi, which are transmitted to humans through small mammals of the Muridae and Cricetidae families. TBE is caused by viruses belonging to five different phylogenetic subtypes. The similarities in the ecology of HFRS and TBE pathogens is presented here. Hantavirus-infected small mammals can transmit the virus to uninfected animals, and ticks can also transmit hantavirus to other ticks and mammals. Hantavirus transmission from ticks to humans is possible only hypothetically based on indirect data. Over the past 23 years, 164,582 cases of HFRS (4.9 per 105 people) and 71,579 cases of TBE (2.5 per 105 people) were registered in Russia. The mortality rate was 0.4% (668 cases) in HFRS and 1.6% deaths (1136 cases) in TBE. There were 4030 HFRS (2.5%) and 9414 TBE (13%) cases in children under 14 years old. HFRS and TBE cases were registered in 42 out of 85 Russian regions; in 18—only HFRS, in 13—only TBE, and 12 had no reported cases. The prospects of applying a combined vaccine for HFRS and TBE prevention are shown in this paper. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

12 pages, 3930 KB  
Article
Exploring the Genetic Diversity and Molecular Evolution of Seoul and Hantaan Orthohantaviruses
by Atanas V. Demirev, Sangyi Lee, Sejik Park, Hyunbeen Kim, Seunghye Cho, Kyuyoung Lee, Kisoon Kim, Jin-Won Song, Man-Seong Park and Jin Il Kim
Viruses 2024, 16(1), 105; https://doi.org/10.3390/v16010105 - 11 Jan 2024
Cited by 6 | Viewed by 2794
Abstract
Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and [...] Read more.
Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and small (S) gene segments. Despite similar epizootic cycles and clinical symptoms, SEOV and HTNV exhibited distinct genetic and evolutionary dynamics. The phylogenetic trees of each segment consistently showed major genetic clades associated with the geographical distribution of both viruses. Remarkably, SEOV M and S segments exhibit higher evolutionary rates, rapidly increasing genetic diversity, and a more recent origin in contrast to HTNV. Reassortment events were infrequent, but both viruses appear to utilize the M gene segment in genetic exchanges. SEOV favors the L or M segment reassortment, while HTNV prefers the M or S segment exchange. Purifying selection dominates in all three gene segments of both viruses, yet SEOV experiences an elevated positive selection in its glycoprotein Gc ectodomain. Key amino acid differences, including a positive ‘lysine fence’ (through residues K77, K82, K231, K307, and K310) located at the tip of the Gn, alongside the physical stability around an RGD-like motif through M108-F334 interaction, may contribute to the unique antigenic properties of SEOV. With the increasing global dispersion and potential implications of SEOV for the global public health landscape, this study highlights the unique evolutionary dynamics and antigenic properties of SEOV and HTNV in informing vaccine design and public health preparedness. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

9 pages, 1674 KB  
Brief Report
Comparative Evaluation of a Standard M10 Assay with Xpert Xpress for the Rapid Molecular Diagnosis of SARS-CoV-2, Influenza A/B Virus, and Respiratory Syncytial Virus
by Azwani Abdullah, I-Ching Sam, Yin Jie Ong, Chun Hao Theo, Muhammad Harith Pukhari and Yoke Fun Chan
Diagnostics 2023, 13(23), 3507; https://doi.org/10.3390/diagnostics13233507 - 22 Nov 2023
Cited by 8 | Viewed by 3404
Abstract
SARS-CoV-2, influenza A/B virus (IAV/IBV), and respiratory syncytial virus (RSV) are among the common viruses causing acute respiratory infections. Clinical diagnosis to differentiate these viruses is challenging due to similar clinical presentations; thus, laboratory-based real-time RT PCR is the gold standard for diagnosis. [...] Read more.
SARS-CoV-2, influenza A/B virus (IAV/IBV), and respiratory syncytial virus (RSV) are among the common viruses causing acute respiratory infections. Clinical diagnosis to differentiate these viruses is challenging due to similar clinical presentations; thus, laboratory-based real-time RT PCR is the gold standard for diagnosis. This retrospective study aimed to evaluate the diagnostic performance of STANDARD M10 Flu/RSV/SARS-CoV-2 (SD Biosensor Inc., Seoul, Korea) using archived positive and negative respiratory samples for SARS-CoV-2, IAV, IBV, and RSV. A total of 322 respiratory samples were tested, comprising 215 positive samples (49 SARS-CoV-2, 48 IAV, 53 IBV, 65 RSV) and 107 negative samples. All samples were tested with both STANDARD M10 and compared to either Xpert Xpress SARS-CoV-2 or Xpert Xpress Flu/RSV (Cepheid, Sunnyvale, CA, USA). The sensitivity, specificity, positive predictive value, and negative predictive value rates of STANDARD M10 were very similar to Xpert Xpress SARS-CoV-2 or Xpert Xpress Flu/RSV ranges for each virus (98–100%). The duration of testing and workflows were similar. The overall agreement was 99.4%, including 99.1% agreement for positive samples and 100% agreement for negative samples. In conclusion, the STANDARD M10 point-of-care test is suitable for rapid simultaneous detection of SARS-CoV-2, IAV, IBV, and RSV. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Infectious Diseases and Microorganisms)
Show Figures

Figure 1

16 pages, 3527 KB  
Review
Zoonotic Hantaviridae with Global Public Health Significance
by Rui-Xu Chen, Huan-Yu Gong, Xiu Wang, Ming-Hui Sun, Yu-Fei Ji, Su-Mei Tan, Ji-Ming Chen, Jian-Wei Shao and Ming Liao
Viruses 2023, 15(8), 1705; https://doi.org/10.3390/v15081705 - 8 Aug 2023
Cited by 23 | Viewed by 5340
Abstract
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome [...] Read more.
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) in many countries. Some hantaviruses infect wild or domestic animals without causing severe symptoms. Rodents, shrews, and bats are reservoirs of various mammalian hantaviruses. Recent years have witnessed significant advancements in the study of hantaviruses including genomics, taxonomy, evolution, replication, transmission, pathogenicity, control, and patient treatment. Additionally, new hantaviruses infecting bats, rodents, shrews, amphibians, and fish have been identified. This review compiles these advancements to aid researchers and the public in better recognizing this zoonotic virus family with global public health significance. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

10 pages, 1142 KB  
Communication
A Development of Rapid Whole-Genome Sequencing of Seoul orthohantavirus Using a Portable One-Step Amplicon-Based High Accuracy Nanopore System
by Kyungmin Park, Juyoung Noh, Kijin Kim, Jongwoo Kim, Hee-Kyung Cho, Seong-Gyu Kim, Eunyoung Yang, Won-Keun Kim and Jin-Won Song
Viruses 2023, 15(7), 1542; https://doi.org/10.3390/v15071542 - 13 Jul 2023
Cited by 4 | Viewed by 3170
Abstract
Whole-genome sequencing provides a robust platform for investigating the epidemiology and transmission of emerging viruses. Oxford Nanopore Technologies allows for real-time viral sequencing on a local laptop system for point-of-care testing. Seoul orthohantavirus (Seoul virus, SEOV), harbored by Rattus norvegicus and R. rattus [...] Read more.
Whole-genome sequencing provides a robust platform for investigating the epidemiology and transmission of emerging viruses. Oxford Nanopore Technologies allows for real-time viral sequencing on a local laptop system for point-of-care testing. Seoul orthohantavirus (Seoul virus, SEOV), harbored by Rattus norvegicus and R. rattus, causes mild hemorrhagic fever with renal syndrome and poses an important threat to public health worldwide. We evaluated the deployable MinION system to obtain high-fidelity entire-length sequences of SEOV for the genome identification of accurate infectious sources and their genetic diversity. One-step amplicon-based nanopore sequencing was performed from SEOV 80–39 specimens with different viral copy numbers and SEOV-positive wild rats. The KU-ONT-SEOV-consensus module was developed to analyze SEOV genomic sequences generated from the nanopore system. Using amplicon-based nanopore sequencing and the KU-ONT-consensus pipeline, we demonstrated novel molecular diagnostics for acquiring full-length SEOV genome sequences, with sufficient read depth in less than 6 h. The consensus sequence accuracy of the SEOV small, medium, and large genomes showed 99.75–100% (for SEOV 80–39 isolate) and 99.62–99.89% (for SEOV-positive rats) identities. This study provides useful insights into on-site diagnostics based on nanopore technology and the genome epidemiology of orthohantaviruses for a quicker response to hantaviral outbreaks. Full article
Show Figures

Figure 1

13 pages, 3622 KB  
Review
Cases of Hemorrhagic Fever with Renal Syndrome in Russia during 2000–2022
by Evgeniy Tkachenko, Svetlana Kurashova, Alexandra Balkina, Alexander Ivanov, Mariya Egorova, Oksana Leonovich, Yulia Popova, Rostislav Teodorovich, Alla Belyakova, Petr Tkachenko, Dmitriy Trankvilevsky, Ekaterina Blinova, Aydar Ishmukhametov and Tamara Dzagurova
Viruses 2023, 15(7), 1537; https://doi.org/10.3390/v15071537 - 12 Jul 2023
Cited by 18 | Viewed by 3054
Abstract
During 2000–2022, a total of 69 of Russia’s 85 administrative regions reported 164,580 hemorrhagic fever with renal syndrome (HFRS) cases, with an annual average rate of 4.9 cases/100,000 population (105 popul.). European Russia reported 162,045 (98.5%) cases in 53/60 regions with 9.7 [...] Read more.
During 2000–2022, a total of 69 of Russia’s 85 administrative regions reported 164,580 hemorrhagic fever with renal syndrome (HFRS) cases, with an annual average rate of 4.9 cases/100,000 population (105 popul.). European Russia reported 162,045 (98.5%) cases in 53/60 regions with 9.7 cases/105 popul. Asian Russia reported 2535 (1.5%) cases in 16/25 regions with 0.6 cases/105 popul. In the same period, Russia reported 668 (0.4%) fatal HFRS cases, and 4030 (2.4%) cases among children under the age of 14 years. Most HFRS cases occurred during autumn and winter. The incidence among rural residents was 6.7 per 105 popul., higher than the urban 4.4 per 105 popul.; however, among HFRS patients, rural and urban residents account for 35% and 65%, respectively. Six hantaviruses, causing HFRS of different clinical severity, were recognized as pathogens: Hantaan (HTNV) and Amur (AMUV) of Orthohantavirus hantanense species, Seoul (SEOV) of Orthohantavirus seoulense species, Puumala (PUUV) of Orthohantavirus puumalaense species, and Kurkino (KURV) and Sochi (SOCV) of Orthohantavirus dobravaense species, with the principal hosts Apodemus agrarius coreae, Apodemus peninsulae, Rattus norvegicus, Myodes glareolus, Apodemus agrarius agrarius, and Sylvaemus ponticus, respectively. It was found that 97.7% of HFRS cases are caused by PUUV, therefore, this virus plays the main role in the HFRS morbidity structure in Russia. Full article
Show Figures

Figure 1

11 pages, 953 KB  
Opinion
The Power of We
by James W. Le Duc
Viruses 2023, 15(4), 921; https://doi.org/10.3390/v15040921 - 5 Apr 2023
Cited by 2 | Viewed by 2078
Abstract
“The Power of We” is a personal tribute to the individuals and organizations that collaborated in the discovery and advancement of knowledge of the hantaviruses following the original isolation of Hantaan virus by Ho Wang Lee. It focuses on the work done primarily [...] Read more.
“The Power of We” is a personal tribute to the individuals and organizations that collaborated in the discovery and advancement of knowledge of the hantaviruses following the original isolation of Hantaan virus by Ho Wang Lee. It focuses on the work done primarily at the United States Army Medical Research Institute of Infectious Diseases during the decade of the 1980s under the leadership of Joel Dalrymple, who worked in close partnership with Ho Wang Lee. These early studies helped define the global distribution of Seoul virus and provided seminal information on its maintenance and transmission among urban rats. Other collaborations involved partners in Europe, Asia, and Latin America and resulted in the isolation of novel hantaviruses, a better understanding of their global distribution, and validation of diagnostics and therapeutic interventions for treatment of human diseases. By working in partnership, scientists from around the world made critical discoveries that led to a better understanding of the hantaviruses. “The Power of We” demonstrates that we all benefit when we work together with a shared vision, a common commitment to excellence, and mutual respect. Full article
Show Figures

Figure 1

11 pages, 540 KB  
Communication
Low Prevalence of SARS-CoV-2 Antibodies in Canine and Feline Serum Samples Collected during the COVID-19 Pandemic in Hong Kong and Korea
by Yun Young Go, Maura Carrai, Yan Ru Choi, Christopher J. Brackman, Karina W. S. Tam, Pierra Y. T. Law, Fiona Woodhouse, Jane Gray, Ji Hun Kim, Joohyung Park, Chae Won Jeon, Hyomi Jang, Ioannis Magouras, Nicola Decaro, Samuel M. S. Cheng, Malik Peiris, Julia A. Beatty and Vanessa R. Barrs
Viruses 2023, 15(2), 582; https://doi.org/10.3390/v15020582 - 20 Feb 2023
Cited by 7 | Viewed by 2993
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide since its emergence in 2019. Knowing the potential capacity of the virus to adapt to other species, the serological surveillance of SARS-CoV-2 infection in susceptible animals is important. Hong Kong [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide since its emergence in 2019. Knowing the potential capacity of the virus to adapt to other species, the serological surveillance of SARS-CoV-2 infection in susceptible animals is important. Hong Kong and Seoul are two of Asia’s most densely populated urban cities, where companion animals often live in close contact with humans. Sera collected from 1040 cats and 855 dogs during the early phase of the pandemic in Hong Kong and Seoul were tested for SARS-CoV-2 antibodies using an ELISA that detects antibodies against the receptor binding domain of the viral spike protein. Positive sera were also tested for virus neutralizing antibodies using a surrogate virus neutralization (sVNT) and plaque reduction neutralization test (PRNT). Among feline sera, 4.51% and 2.54% of the samples from Korea and Hong Kong, respectively, tested ELISA positive. However, only 1.64% of the samples from Korea and 0.18% from Hong Kong tested positive by sVNT, while only 0.41% of samples from Korea tested positive by PRNT. Among canine samples, 4.94% and 6.46% from Korea and Hong Kong, respectively, tested positive by ELISA, while only 0.29% of sera from Korea were positive on sVNT and no canine sera tested positive by PRNT. These results confirm a low seroprevalence of SARS-CoV-2 exposure in companion animals in Korea and Hong Kong. The discordance between the RBD-ELISA and neutralization tests may indicate possible ELISA cross-reactivity with other coronaviruses, especially in canine sera. Full article
(This article belongs to the Special Issue Viral Infections in Companion Animals: Volume 2)
Show Figures

Figure 1

25 pages, 1839 KB  
Review
Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention
by Ayushi Sehgal, Sanya Mehta, Kritika Sahay, Ekaterina Martynova, Albert Rizvanov, Manoj Baranwal, Sara Chandy, Svetlana Khaiboullina, Emmanuel Kabwe and Yuriy Davidyuk
Viruses 2023, 15(2), 561; https://doi.org/10.3390/v15020561 - 18 Feb 2023
Cited by 56 | Viewed by 7860
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute [...] Read more.
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed. Full article
(This article belongs to the Special Issue Hantavirus 2022)
Show Figures

Figure 1

15 pages, 1667 KB  
Article
Pet Rats as the Likely Reservoir for Human Seoul Orthohantavirus Infection
by Elisa Heuser, Stephan Drewes, Jakob Trimpert, Dusan Kunec, Calvin Mehl, Marieke P. de Cock, Ankje de Vries, Christiane Klier, Martin Oskamp, Peter Tenhaken, Fatima Hashemi, Daniela Heinz, Mariana Nascimento, Marc Boelhauve, Rasa Petraityte-Burneikiene, Dina Raafat, Miriam Maas, Detlev H. Krüger, Andreas Latz, Jörg Hofmann, Gerald Heckel, Johannes Dreesman and Rainer G. Ulrichadd Show full author list remove Hide full author list
Viruses 2023, 15(2), 467; https://doi.org/10.3390/v15020467 - 7 Feb 2023
Cited by 14 | Viewed by 4090
Abstract
Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic [...] Read more.
Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic infection. To further investigate the SEOV reservoir, additional rats from the patient and another owner, all of which were purchased from the same vendor, were tested. SEOV RNA and anti-SEOV antibodies were found in both of the patient’s rats and in two of the three rats belonging to the other owner. The complete coding sequences of the small (S), medium (M), and large (L) segments obtained from one rat per owner exhibited a high sequence similarity to SEOV strains of breeder rat or human origin from the Netherlands, France, the USA, and Great Britain. Serological screening of 490 rats from breeding facilities and 563 wild rats from Germany (2007–2020) as well as 594 wild rats from the Netherlands (2013–2021) revealed 1 and 6 seropositive individuals, respectively. However, SEOV RNA was not detected in any of these animals. Increased surveillance of pet, breeder, and wild rats is needed to identify the origin of the SEOV strain in Europe and to develop measures to prevent transmission to the human population. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2.0)
Show Figures

Figure 1

11 pages, 1607 KB  
Article
Genetic Evolution Analysis and Host Characteristics of Hantavirus in Yunnan Province, China
by Na Wang, Jia-Xiang Yin, Yao Zhang, Li Wu, Wen-Hong Li, Yun-Yan Luo, Rui Li, Zi-Wei Li and Shu-Qing Liu
Int. J. Environ. Res. Public Health 2022, 19(20), 13433; https://doi.org/10.3390/ijerph192013433 - 18 Oct 2022
Cited by 7 | Viewed by 2657
Abstract
For a long time, the epidemic situation of hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus (HV) in Yunnan Province of China has been relatively severe. The molecular epidemiology and host characteristics of HV in Yunnan Province are still not completely clear, [...] Read more.
For a long time, the epidemic situation of hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus (HV) in Yunnan Province of China has been relatively severe. The molecular epidemiology and host characteristics of HV in Yunnan Province are still not completely clear, and the systematic and long-term investigation of the epidemic area is very limited. In this study, a total of 488 murine-shaped animals were captured in the three regions of Mile City, Mangshi City and Lianghe County in Yunnan Province, and then the type of HV was identified by multiplex real-time RT-PCR and sequenced. The results indicate that 2.46% of the murine-shaped animal specimens were infected with HV. A new subtype of Seoul virus (SEOV) was found in the rare rat species Rattus nitidus in Lianghe County, and the two strains of this new subtype were named YNLH-K40 and YNLH-K53. Through the phylogenetic analysis of this new subtype, it is shown that this new subtype is very similar to the type S5 of SEOV, which is previously described as the main cause for the high incidence of HFRS in Longquan City, Zhejiang Province, China. This new subtype is highly likely to cause human infection and disease. Therefore, in addition to further promoting the improvement of the HV gene database and strengthening the discovery and monitoring of the host animals in Yunnan Province, more attention should be paid to the pathogenic potential of the newly discovered HV type. Full article
Show Figures

Figure 1

14 pages, 1815 KB  
Article
Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area
by Junsik Park and Gurjoong Kim
Int. J. Environ. Res. Public Health 2022, 19(19), 12060; https://doi.org/10.3390/ijerph191912060 - 23 Sep 2022
Cited by 1 | Viewed by 1859
Abstract
Although more than two years have passed since the appearance of the coronavirus disease 2019 (COVID-19), few policies on public transportation have been implemented to reduce its spread. It is common knowledge that public transportation is vulnerable to COVID-19, but it has not [...] Read more.
Although more than two years have passed since the appearance of the coronavirus disease 2019 (COVID-19), few policies on public transportation have been implemented to reduce its spread. It is common knowledge that public transportation is vulnerable to COVID-19, but it has not been easy to formulate an appropriate public transportation policy based on a valid rationale. In this study, a modified SEIHR model was developed to evaluate the socioeconomic effects of public transportation policies. By applying the developed model to intercity buses in the Seoul metropolitan area, the socioeconomic efficiency of the policy of reducing the number of passengers was evaluated. The analysis showed that the optimal number of passengers decreased as the number of initially infected people increased; in addition, the basic reproduction number R0, illness cost per person, and probability of infection with a single virus were higher. However, depending on these variable conditions, the policy to reduce the number of passengers in a vehicle may not be required, so it is necessary to make an appropriate judgment according to the situation. In particular, the emergence of a new mutant COVID-19 will necessitate the development of appropriate countermeasures by comprehensively examining the change in the number of infected individuals and the fatality rate. This study can guide the development of such countermeasures. Full article
Show Figures

Figure 1

Back to TopTop