Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (493)

Search Parameters:
Keywords = Soxhlet extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2829 KB  
Article
Purification of Lepidilines A, B, C, and D from Lepidium meyenii Walpers by Centrifugal Partition Chromatography Followed by Semi-Preparative HPLC and Preliminary Evaluation of Anticancer Activity Against Neuroblastoma Cell Lines
by Dominik Tarabasz, Estera Okoń, Anna Wawruszak, Stavros Beteinakis, Apostolis Angelis, Henry O. Meissner, Leandros A. Skaltsounis and Wirginia Kukula-Koch
Molecules 2025, 30(22), 4360; https://doi.org/10.3390/molecules30224360 - 11 Nov 2025
Abstract
Lepidium meyenii Walpers (syn. Lepidium peruvianum Chacon) has been cultivated for centuries in the Peruvian Andes as both a vegetable and a traditional medicine resource. Maca is classified as a superfood and is widely used as a dietary supplement, particularly noted for its [...] Read more.
Lepidium meyenii Walpers (syn. Lepidium peruvianum Chacon) has been cultivated for centuries in the Peruvian Andes as both a vegetable and a traditional medicine resource. Maca is classified as a superfood and is widely used as a dietary supplement, particularly noted for its potential to enhance endurance, fertility, and endocrine balance. In recent years, there has been a growing interest in the cytotoxic effects of lepidilines and their derivatives; however, these compounds have been less extensively studied due to challenges associated with their isolation. This study aims to establish optimal extraction conditions to enrich lepidiline content in the extracts and to propose an efficient isolation method for four lepidilines using a green purification technique known as Centrifugal Partition Chromatography (CPC). The isolated compounds will be evaluated for their anticancer potential utilizing the MTT assay on SK-N-SH (ATCC® HTB-11™) and SK-N-AS (ATCC® CRL-2137™) neuroblastoma cell lines. The findings indicate that Soxhlet extraction with dichloromethane resulted in the highest recovery of lepidilines, with a content of 10.24% expressed as lepidiline A. The optimal biphasic solvent mixture suitable for CPC chromatographic applications was identified as a combination of chloroform, methanol, and water (4:3:2 v/v/v) containing 60 mM HCl. When utilized in conjunction with semi-preparative high-performance liquid chromatography (HPLC), this method successfully isolated lepidilines A–D, achieving a purity exceeding 95%. Notably, lepidiline B exhibited the highest cytotoxic potential, with an IC50 value of 14.85 µg/mL in SK-N-AS cells. Full article
Show Figures

Figure 1

27 pages, 3118 KB  
Article
Native Collagen and Total Lipid Extract Obtained from Caranx hyppos By-Products: Characterization for Potential Use in the Biomedical and Nutraceutical Fields
by Sheyza Menéndez-Tasé, Evelin Gaeta-Leal, Darío Iker Téllez-Medina, Daniel Tapia-Maruri, Edgar Oliver López-Villegas, Georgina Calderón-Domínguez, Tzayhri Gallardo-Velázquez, Guillermo Osorio-Revilla, Mayuric Teresa Hernández-Botello and Diana Maylet Hernández-Martínez
Mar. Drugs 2025, 23(11), 432; https://doi.org/10.3390/md23110432 - 9 Nov 2025
Viewed by 194
Abstract
The processing of fishery products generates a substantial amount of by-products, which can be utilized to promote a circular economy. The objective of the present study was to extract and characterize native collagen and total lipid extract from the fish skin and bones [...] Read more.
The processing of fishery products generates a substantial amount of by-products, which can be utilized to promote a circular economy. The objective of the present study was to extract and characterize native collagen and total lipid extract from the fish skin and bones of crevalle jack (Caranx hippos). Physicochemical, structural, and morphological properties were evaluated for collagens. Chemical composition and functional properties were evaluated for lipid extracts. Native type I collagens were obtained by acid extraction, yielding approximately 2.64–6.16% (d.b.). The elemental chemical analysis showed its purity. The stability of the triple helix of collagen was verified through characteristic bands in the FTIR and UV spectra, the peaks at 2θ, around 7.5° and 19.5° obtained by XRD, and the bands of SDS-PAGE. Collagens show isoelectric points of 4.94 (skin) and 4.90 (bone), thermal stabilities of 53.40 °C (skin) and 46.88 °C (bone), and the percentage surface porosities of 41.28 (skin) and 38.84 (bone), all of which demonstrate their potential as a raw material in the biomedical field. The total lipids obtained were extracted using the Soxhlet and Folch methods. The extracts show EPA (1.26–3.16%) and DHA (3.94–9.78%) contents, with inhibition percentages of 32.7% (ABTS), 19.6% (DPPH), and 70.83% (β-carotene). These results highlight the potential of total lipid extract for nutraceutical and food applications. Full article
Show Figures

Graphical abstract

16 pages, 3577 KB  
Article
Recovery of Phenolic Compounds from Rowan Fruits (Sorbus aucuparia L.): A Comparison of Pretreatment and Extraction Methods
by Bartłomiej Zieniuk and Dorota Kowalska
Separations 2025, 12(11), 305; https://doi.org/10.3390/separations12110305 - 5 Nov 2025
Viewed by 138
Abstract
Phenolic compounds contribute significantly to the nutritional value of underused rowan (Sorbus aucuparia L.), but their extraction depends heavily on pre-processing and extraction methods. This study examined convective drying (CD) and freeze-drying (FD) of fruits, followed by ethanol extraction using rotor–stator homogenization, [...] Read more.
Phenolic compounds contribute significantly to the nutritional value of underused rowan (Sorbus aucuparia L.), but their extraction depends heavily on pre-processing and extraction methods. This study examined convective drying (CD) and freeze-drying (FD) of fruits, followed by ethanol extraction using rotor–stator homogenization, ultrasound-assisted extraction (UAE), or Soxhlet, to measure total phenolics (TPC), total flavonoids (TFC), and DPPH antioxidant activity (AA). AGREEprep benchmarking was included to assess method greenness. FD samples outperformed CD samples, increasing TPC by ≈2× (α = 0.05). For CD samples, Soxhlet extraction produced the highest averages, while for FD samples, UAE resulted in the highest AA (>58 μmol TE/g DW), and Soxhlet with 16 cycles maximized TPC and TFC (22.82 mg CGA/g DW; 4.24 mg QE/g DW). AA correlated strongly with TPC (R = 0.860) but only exhibited a moderate correlation with TFC. Multivariate analysis revealed that extracts mainly differed based on drying method and extraction intensity. AGREEprep scores were 0.45 for homogenization/UAE and 0.35 for Soxhlet. Overall, drying and extraction methods jointly influence results: FD combined with UAE offers a robust antioxidant profile with a lower environmental impact, whereas FD with Soxhlet maximizes phenolic and flavonoid yields at a higher environmental cost. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Figure 1

22 pages, 2770 KB  
Article
A Bioeconomy Model Approach: Combining Marketing 3.0 and Biorefinery-Process Concept for the Creole-Antillean Avocado Valorization in Montes de María, Colombia
by Tamy Carolina Herrera-Rodríguez, Segundo Rojas-Flores and Ángel Darío González-Delgado
Processes 2025, 13(11), 3561; https://doi.org/10.3390/pr13113561 - 5 Nov 2025
Viewed by 191
Abstract
This research proposes a bioeconomy model that integrates the principles of Marketing 3.0 with the concept of a biorefinery to valorize the Creole-Antillean avocado cultivated in the Montes de María region, Colombia. The study emerges from the absence of commercial strategies that articulate [...] Read more.
This research proposes a bioeconomy model that integrates the principles of Marketing 3.0 with the concept of a biorefinery to valorize the Creole-Antillean avocado cultivated in the Montes de María region, Colombia. The study emerges from the absence of commercial strategies that articulate social responsibility and economic viability in the use of agricultural by-products, considering that the current industry is almost exclusively focused on the Hass variety. The methodology employed a mixed-methods approach, combining quantitative and qualitative analyses. Market studies, consumer segmentation, competition and trend analyses were conducted, along with the use of the TradeMap platform to identify export opportunities and the international positioning of avocado-derived products. In the experimental phase, the production processes were validated: bio-oil was extracted through the Soxhlet method using solvents, while chlorophyll and biocontrol agents were isolated with ethanol, ensuring efficiency and scalability. The results obtained through Aspen Plus simulation were validated by comparing software outputs with data reported in the literature. The model includes a corporate social responsibility section that evaluates the regional impact, highlighting job creation, community inclusion, and the strengthening of the social fabric. Results show that in 2023, Mexico led exports with 1,220,919 tons, followed by the Netherlands and Peru, while Colombia reached 114,741 tons, consolidating itself as a country with high growth potential. The findings suggest that the valorization of the Creole-Antillean variety represents a strategic opportunity to diversify the agroindustry, strengthen competitiveness, create employment, reduce waste, and guide investment decisions in bioeconomy, sustainability, promoting rural development and green innovation in Colombia. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

27 pages, 4553 KB  
Article
Cellulose Carriers from Spent Coffee Grounds for Lipase Immobilization and Evaluation of Biocatalyst Performance
by Marta Ostojčić, Mirna Brekalo, Marija Stjepanović, Blanka Bilić Rajs, Natalija Velić, Stjepan Šarić, Igor Djerdj, Sandra Budžaki and Ivica Strelec
Sustainability 2025, 17(21), 9633; https://doi.org/10.3390/su17219633 - 29 Oct 2025
Viewed by 591
Abstract
In line with the circular economy approach and the pursuit of sustainable solutions for spent coffee grounds, this study investigates the valorization of spent coffee grounds as a source of cellulose-based enzyme immobilization carriers. Considering that global coffee consumption generates approximately 6.9 million [...] Read more.
In line with the circular economy approach and the pursuit of sustainable solutions for spent coffee grounds, this study investigates the valorization of spent coffee grounds as a source of cellulose-based enzyme immobilization carriers. Considering that global coffee consumption generates approximately 6.9 million tonnes of spent coffee grounds annually, their disposal represents both an environmental challenge and an opportunity for value-added applications. A multistep extraction process, including Soxhlet extraction followed by sequential subcritical extraction with ethanol and water, and alkaline treatment, led to the production of cellulose-enriched carriers. The carriers obtained were characterized by their morphology, porosity and surface properties and subsequently used for the two lipases immobilization, Burkholderia cepacia (BCL) and Pseudomonas fluorescens (PFL), using three techniques: adsorption and covalent binding via direct and indirect methods. The immobilized lipases were analyzed for key biochemical and operational properties and compared with each other and with their free enzymes. Based on their stability, catalytic activity, and reusability, the lipases immobilized by adsorption were identified as the most efficient biocatalysts. These immobilized enzymes were then used in two selected reactions to demonstrate their practical utility: cocoa butter substitute synthesis using PFL and the enzymatic pretreatment of wastewater from the oil processing industry using BCL. Both immobilized lipases showed excellent catalytic performance and maintained their high activity over four consecutive reuse cycles. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

12 pages, 2247 KB  
Technical Note
A Closed-Loop Solvent Recycling Device for Polymer Removal in Graphene Transfer Process
by Zian Tang, Junhao Yang, Haoqun Huang, Minhui Ma, Minyi Zhu and Lingling Zhang
Separations 2025, 12(11), 295; https://doi.org/10.3390/separations12110295 - 26 Oct 2025
Viewed by 389
Abstract
The traditional chemical vapor deposition (CVD)graphene transfer process generates a large amount of solvent waste, posing a significant sustainability challenge. To address this, we designed a Cyclic Cleaning Multi-Chamber (CCMC) system. Inspired by Soxhlet extraction, the CCMC enables closed-loop solvent recycling through integrated [...] Read more.
The traditional chemical vapor deposition (CVD)graphene transfer process generates a large amount of solvent waste, posing a significant sustainability challenge. To address this, we designed a Cyclic Cleaning Multi-Chamber (CCMC) system. Inspired by Soxhlet extraction, the CCMC enables closed-loop solvent recycling through integrated distillation, condensation, and reflux mechanisms. Experimental results show that the system effectively removes poly(methyl methacrylate) (PMMA) residues from transferred graphene without damaging its structural integrity, a finding confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The CCMC system achieves a solvent recovery efficiency of over 98% across 25 cycles using acetone, significantly reducing solvent consumption compared to conventional methods. While providing this substantial environmental benefit, the energy demand remains moderate, increasing by only about 15 kWh. These results position the CCMC as a scalable, eco-friendly solution for the semiconductor and nanomaterial industries, promoting the broader adoption of sustainable manufacturing practices. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

29 pages, 3015 KB  
Article
Green Optimization of Sesame Seed Oil Extraction via Pulsed Electric Field and Ultrasound Bath: Yield, Antioxidant Activity, Oxidative Stability, and Functional Food Potential
by Vassilis Athanasiadis, Marianna Giannopoulou, Georgia Sarlami, Eleni Bozinou, Panagiotis Varagiannis and Stavros I. Lalas
Foods 2025, 14(21), 3653; https://doi.org/10.3390/foods14213653 - 26 Oct 2025
Viewed by 538
Abstract
Sesame seed oil is a bioactive-rich lipid source, notable for lignans, tocopherols, and unsaturated fatty acids that underpin its antioxidant and cardioprotective properties. This study optimized two innovative, non-thermal extraction techniques—pulsed electric field (PEF) and ultrasound bath-assisted extraction (UBAE)—to maximize yield and preserve [...] Read more.
Sesame seed oil is a bioactive-rich lipid source, notable for lignans, tocopherols, and unsaturated fatty acids that underpin its antioxidant and cardioprotective properties. This study optimized two innovative, non-thermal extraction techniques—pulsed electric field (PEF) and ultrasound bath-assisted extraction (UBAE)—to maximize yield and preserve oil quality for functional food applications. A blocked definitive screening design combined with response surface methodology modeled the effects of energy power (X1, 60–100%), liquid-to-solid ratio (X2, 10–20 mL/g), and extraction time (X3, 10–30 min) on fat content, DPPH antiradical activity, and oxidative stability indices (Conjugated Dienes, CDs/Conjugated Trienes, CTs). UBAE achieved the highest fat yield—59.0% at low energy (60%), high X2 (20 mL/g), and short X3 (10 min)—while PEF maximized DPPH to 36.0 μmol TEAC/kg oil at high energy (100%), moderate X2 (17 mL/g), and short X3 (10 min). CDs were minimized to 19.78 mmol/kg (UBAE, 60%, 10 mL/g, 10 min) and CTs to 3.34 mmol/kg (UBAE, 60%, 12 mL/g, 10 min). Partial least squares analysis identified X2 and X3 as the most influential variables (VIP > 0.8), with energy–time interplay (X1 × X3) being critical for antioxidant capacity. Compared to cold-pressing and Soxhlet extraction, PEF and cold-pressing retained higher antioxidant activity (~19 μmol TEAC/kg) and oxidative stability (TBARS ≤ 0.30 mmol MDAE/kg), while Soxhlet—though yielding 55.65% fat—showed the poorest quality profile (Totox value > 560). Both non-thermal techniques can deliver bioactive-rich sesame oil with lower oxidative degradation, supporting their application in functional foods aimed at improving dietary antioxidant intake and mitigating lipid oxidation burden. PEF at high energy/short time and UBAE at low energy/short time present complementary, scalable options for producing high-value edible oils aligned with human health priorities. As a limitation, we did not directly quantify lignans or tocopherols in this study, and future work will address their measurement and bioaccessibility. Full article
Show Figures

Figure 1

19 pages, 1441 KB  
Article
From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications
by Nikolaos D. Bikiaris, Evangelia Balla, Despoina Varitimidou, Lelouda-Athanasia Koronaiou and Nikolaos Nikolaidis
Antioxidants 2025, 14(11), 1275; https://doi.org/10.3390/antiox14111275 - 23 Oct 2025
Viewed by 588
Abstract
This study explores the photoprotective and antioxidant potential of cosmetic emulsions formulated with Alnus glutinosa (black alder) extracts. Extraction of bioactive compounds was performed using Soxhlet, ultrasound-assisted, and microwave-assisted techniques with ethanol and water as solvents. The phytochemical profiles of the resulting extracts [...] Read more.
This study explores the photoprotective and antioxidant potential of cosmetic emulsions formulated with Alnus glutinosa (black alder) extracts. Extraction of bioactive compounds was performed using Soxhlet, ultrasound-assisted, and microwave-assisted techniques with ethanol and water as solvents. The phytochemical profiles of the resulting extracts were characterized via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and liquid chromatography–high-resolution mass spectrometry (LC-HRMS). The extracts were incorporated into oil-in-water emulsions and assessed for antioxidant activity using the DPPH radical scavenging assay, pH and viscosity stability, and color L*a*b* values. Among the extraction methods, ethanol-based Soxhlet extraction yielded the highest concentration of bioactive compounds and demonstrated superior antioxidant and photoprotective efficacy. This is the first report that evaluates the antioxidant properties of A. glutinosa-enriched emulsions, supporting their application as multifunctional, plant-derived cosmeceuticals for skin protection. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

24 pages, 817 KB  
Review
Exploring Apis mellifera Propolis Extracts: Bioavailability, Protective Strategies, and Applications in Food Systems
by Armando Pelaez-Acero, Marycarmen Cortes-Hernández, Anuar Jottar-Bernal, Lorena Luna-Rodríguez, Armando Zepeda-Bastida, Irma Morales-Rodríguez and Gabriela Medina-Pérez
Appl. Sci. 2025, 15(20), 11043; https://doi.org/10.3390/app152011043 - 15 Oct 2025
Viewed by 645
Abstract
Propolis, a resinous substance produced by Apis mellifera, is a chemically diverse natural product rich in polyphenols, flavonoids, terpenes, vitamins, and minerals. These compounds exhibit a range of biological activities, including antimicrobial, antioxidant, antidiabetic, anti-inflammatory, and cardioprotective effects, making propolis an attractive [...] Read more.
Propolis, a resinous substance produced by Apis mellifera, is a chemically diverse natural product rich in polyphenols, flavonoids, terpenes, vitamins, and minerals. These compounds exhibit a range of biological activities, including antimicrobial, antioxidant, antidiabetic, anti-inflammatory, and cardioprotective effects, making propolis an attractive candidate for applications in the food and health sciences. This review summarizes the current understanding of its chemical composition and the environmental, botanical, and genetic factors influencing its variability. Particular attention is given to extraction methods: while conventional approaches such as maceration and Soxhlet extraction remain widely used, they often compromise compound stability. In contrast, emerging techniques—such as ultrasound-, microwave-, and supercritical fluid-assisted extraction—enhance yield, selectivity, and sustainability. Encapsulation strategies, including micro- and nanoencapsulation, are also explored as practical tools to protect propolis bioactives from degradation, improve solubility, and mask their strong taste, thereby ensuring higher bioavailability and consumer acceptability. Recent applications in the meat, dairy, beverage, bakery product, and edible film industries demonstrate propolis’ potential to extend shelf life, inhibit microbial growth, and enrich the nutritional and functional quality of these products. Nevertheless, challenges remain, particularly regarding standardization, allergenicity, dosage, and regulatory approval, which limit its widespread industrial adoption. Overall, Apis mellifera propolis represents a multifunctional natural ingredient that bridges traditional medicine with modern food science. Advances in extraction and encapsulation technologies are paving the way for the integration of this ingredient into functional foods, nutraceuticals, and sustainable food preservation systems, underscoring its value as a natural alternative to synthetic additives. Full article
Show Figures

Figure 1

25 pages, 2327 KB  
Article
Extraction Methods Shape the Phenolic Composition and Bioactivities of Defatted Moroccan Pistacia lentiscus L. Resin
by Abdessamad Beraich, Daniela Batovska, Krastena Nikolova, Burak Dikici, Göksen Gören, Yousra Belbachir, Mohamed Taibi, Amine Elbouzidi, Irena Mincheva, Natalina Panova, Abdesselam Tahani, Abdeslam Asehraou and Abdelmonaem Talhaoui
Antioxidants 2025, 14(10), 1207; https://doi.org/10.3390/antiox14101207 - 5 Oct 2025
Viewed by 898
Abstract
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction [...] Read more.
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction methods—cold maceration (CM), Soxhlet extraction (SE), and ultrasound-assisted extraction (UAE)—using sequential acetone and 70% ethanol to recover complementary phenolic compounds from defatted resin. Targeted UHPLC–ESI–MS/MS profiling identified and quantified 30 phenolics, mainly flavonoids and phenolic acids, providing the first systematic dataset for Moroccan mastic gum. UAE–EtOH extract displayed the strongest antioxidant activity (DPPH IC50 = 0.029 mg/mL; ABTS•+ IC50 = 0.026 mg/mL). SE–acetone and SE–EtOH extracts showed potent antifungal activity, particularly against Geotrichum candidum, Rhodotorula glutinis, and Aspergillus niger (MBC = 1.7%). The SE–acetone extract exhibited cytotoxicity toward MIA PaCa-2 pancreatic cancer cells (IC50 = 19 µg/mL). These findings demonstrate that extraction method and solvent choice strongly influence phenolic recovery and associated bioactivities, supporting the valorization of Moroccan mastic gum as a promising source for nutraceutical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Green Extraction of Antioxidant from Natural Source)
Show Figures

Graphical abstract

15 pages, 1401 KB  
Article
Kinetics of Luteolin Extraction from Peanut Shells and Reseda luteola for Potential Applications as a Biofunctional Ingredient
by Efstratios Episkopou, Dimitrios Tsimogiannis, Maria Giannakourou and Petros Taoukis
Processes 2025, 13(9), 3009; https://doi.org/10.3390/pr13093009 - 21 Sep 2025
Viewed by 572
Abstract
This study investigates the extraction kinetics of luteolin, a bioactive flavonoid with recognized antioxidant and health-promoting properties, from the aerial parts of Reseda luteola (dyer’s weld), with emphasis on its industrial potential. A comparative analysis with peanut shells (Arachis hypogea) identified [...] Read more.
This study investigates the extraction kinetics of luteolin, a bioactive flavonoid with recognized antioxidant and health-promoting properties, from the aerial parts of Reseda luteola (dyer’s weld), with emphasis on its industrial potential. A comparative analysis with peanut shells (Arachis hypogea) identified R. luteola as a superior source, containing 14 ± 3 mg of LUT/g of material, approximately eight times higher than the amount in peanut shells. Luteolin occurred predominantly as luteolin-7-O-glycoside (57%) and the aglycone (35%). Methanolic semi-batch extraction at 25 °C yielded 9.6 mg LUT/g (70%) within 60 min at a solid-to-liquid ratio of 1:9, demonstrating significantly greater solvent efficiency than conventional Soxhlet or maceration techniques. Kinetic modeling, based on Fick’s second law, revealed a biphasic process with a low rate constant ratio (3:1) between the two stages, indicating the need for process optimization. These results establish R. luteola as a cost-effective and sustainable source of luteolin for dietary supplements and functional foods, while indicating the need to explore alternative solvents and advanced extraction methods to further optimize yield and efficiency. Full article
Show Figures

Figure 1

10 pages, 693 KB  
Article
Exploring the Bioactive Potential and Biocompatibility of Extracts from Agro-Industrial Residues for Cosmetic Applications
by Sandra M. Gomes, Filipa Campos, M. Cristina L. Martins, Cláudia Monteiro and Lúcia Santos
Int. J. Mol. Sci. 2025, 26(18), 9169; https://doi.org/10.3390/ijms26189169 - 19 Sep 2025
Viewed by 587
Abstract
Every year, significant amounts of agro-industrial residues are generated. These residues contain several antioxidant compounds that can be extracted and applied to cosmetic products. In this study, phenolic-rich extracts from different agro-industrial residues (chestnut shell—CS, grape seed—GS, kiwi peel—KP, onion peel—OP, and pomegranate [...] Read more.
Every year, significant amounts of agro-industrial residues are generated. These residues contain several antioxidant compounds that can be extracted and applied to cosmetic products. In this study, phenolic-rich extracts from different agro-industrial residues (chestnut shell—CS, grape seed—GS, kiwi peel—KP, onion peel—OP, and pomegranate peel—PP) were obtained and their antioxidant potential and biocompatibility towards human fibroblasts (HFF-1) were evaluated. The total phenolic content ranged from 37.6 mg of gallic acid equivalents (GAE)/g for KP to 343.9 mgGAE/g for CS. Moreover, CS, GS, OP, and PP extracts exhibited strong antioxidant properties, while KP showed more moderate potential. Biocompatibility tests demonstrated that CS and GS extracts were non-cytotoxic at concentrations below 500 mg/L, while OP and PP were safe up to 1000 mg/L. KP extracts were biocompatible up to 10,000 mg/L. This work demonstrated the bioactive potential of various agro-industrial residues for application in the cosmetic industry, given their antioxidant capacity. Additionally, it was the first to establish safe application limits for Soxhlet-extracted compounds, ensuring their safety to consumers. This research emphasises the importance of evaluating the biocompatibility of each extract before its incorporation into cosmetics, as their composition is highly variable. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Graphical abstract

14 pages, 1048 KB  
Article
Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico
by Isis Montalvo-López, María del Rosario García-Mateos, Juan Martínez-Solís, Ramón Marcos Soto-Hernández and Ma Carmen Ybarra-Moncada
Metabolites 2025, 15(9), 617; https://doi.org/10.3390/metabo15090617 - 18 Sep 2025
Viewed by 560
Abstract
Background: Pimenta dioica is a medicinal plant rich in various natural compounds, giving it significant potential for applications in the pharmaceutical, cosmetic, food, and agricultural industries. However, little is known about the metabolites present in the leaves of female and male trees, [...] Read more.
Background: Pimenta dioica is a medicinal plant rich in various natural compounds, giving it significant potential for applications in the pharmaceutical, cosmetic, food, and agricultural industries. However, little is known about the metabolites present in the leaves of female and male trees, as well as their toxicity and genetic variability. Therefore, in this study, molecular characterization was conducted, the volatile compounds in the leaves of female and male trees were identified, and their cytotoxicity was assessed. Methods: For molecular characterization, a clustering analysis was performed using Ward’s minimum variance method; genetic distances were determined using Jaccard’s coefficient (similarity) and an analysis of molecular variance. Hexane extracts were obtained using the Soxhlet method and analyzed by gas chromatography coupled to mass spectrometry (GC–MS). The cytotoxicity of the extracts was evaluated by a bioassay with Artemia salina. Results: Forty-two metabolites were identified in leaf extracts from female and male trees, of which 17 are reported for the first time in this tissue. The female tree exhibited a distinct metabolite profile compared to the male tree and was slightly more toxic than the male tree. However, both were considered to be moderately toxic (282.00 and 222.87 μg/mL, respectively). Conclusions: Pimenta dioica has a high potential for various uses, primarily for anthropocentric purposes due to its composition of specific metabolites and moderate toxicity. The sampled trees showed a high molecular genetic variability among individuals. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Plants)
Show Figures

Figure 1

7 pages, 528 KB  
Proceeding Paper
Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study
by Rohit Malik, Arun Mittal and Prashant Kumar
Eng. Proc. 2025, 87(1), 107; https://doi.org/10.3390/engproc2025087107 - 12 Sep 2025
Viewed by 339
Abstract
Alzheimer’s disease is a degenerative neurological condition mostly affecting memory and cognitive abilities in older people. This study aimed to determine how acteoside, a major plant phytoconstituent, protects against neuronal death in the hippocampus region, activates the cholinergic system, and acts as an [...] Read more.
Alzheimer’s disease is a degenerative neurological condition mostly affecting memory and cognitive abilities in older people. This study aimed to determine how acteoside, a major plant phytoconstituent, protects against neuronal death in the hippocampus region, activates the cholinergic system, and acts as an antioxidant to help people with Alzheimer’s-type dementia. Early research on the extraction process and subsequent in vitro testing revealed that the plant extract had potent antioxidant qualities. Initial assessment highlighted the yield percentage, which was 14.10% using the Soxhlet method. In order to explore this plant’s possible medical uses, further in vivo studies are required. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

21 pages, 1615 KB  
Article
Coproduction of Biodiesel and Bioethanol from Ricinus communis Seed Through an Integrated Process
by Alejandra G. Oliva-Rodríguez, Fernando Salinas De León, Thelma K. Morales-Martínez, José Antonio Rodríguez-De la Garza, Miguel A. Medina-Morales, Marisol Cruz-Requena, Gustavo A. Neyra-Escobedo and Leopoldo J. Ríos-González
Processes 2025, 13(9), 2877; https://doi.org/10.3390/pr13092877 - 9 Sep 2025
Viewed by 708
Abstract
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated [...] Read more.
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated the integrated use of R. communis seeds for the production of biodiesel and bioethanol using eco-efficient technologies. Ultrasound-assisted extraction enhanced oil recovery reached a maximum yield of 34%, surpassing the conventional Soxhlet method. Transesterification was optimized through factorial design, achieving a predicted biodiesel yield of 97% (Qualitek 4.0, 90% confidence interval), with an experimental maximum yield of 90.8% under optimal conditions (24:1 methanol-to-oil ratio, 0.4% catalyst, 90% sonication amplitude, 60 min). The biodiesel met international standards for engine applications. Starch from the residual seed cake was hydrolyzed with enzymatic complexes, yielding 6.8 g/L of reducing sugars, equivalent to 91.4% hydrolysis yield. Fermentation of the hydrolysates with Zymomonas mobilis produced 3.1 g/L ethanol, corresponding to 90.8% of the theoretical yield. This integrated approach exemplifies a circular bioeconomy model by combining biodiesel and bioethanol production, maximizing resource utilization, and minimizing waste. The results highlight the potential of R. communis as a sustainable, scalable feedstock for renewable energy, contributing to energy security and environmental sustainability. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

Back to TopTop