Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,513)

Search Parameters:
Keywords = Soybean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 659 KB  
Article
Drying Temperature Dictates Ileal Amino Acid Digestibility of Enzyme-Treated Soybean Meal in 25 kg Pigs
by Xianyi Tan, Chao Liu, Lixuan Lu, Yong Zhuo, Lin Li and Yunxiang Liang
Animals 2025, 15(22), 3288; https://doi.org/10.3390/ani15223288 (registering DOI) - 13 Nov 2025
Abstract
Soybean meal causes health issues in piglets due to the presence of antigenic proteins. Although enzymatic treatment can break down antigenic proteins, subsequent high-temperature drying may impair amino acid (AA) digestibility via the Maillard reaction. This study evaluated whether the air-drying temperature affects [...] Read more.
Soybean meal causes health issues in piglets due to the presence of antigenic proteins. Although enzymatic treatment can break down antigenic proteins, subsequent high-temperature drying may impair amino acid (AA) digestibility via the Maillard reaction. This study evaluated whether the air-drying temperature affects the ileal AA digestibility of a novel reduced-sugar enzyme-treated soybean meal (ESM) in 25 kg pigs, using fishmeal as a high-digestibility reference. In two trials using pigs fitted with simple T-cannulas in the terminal ileum, ileal digestibility was assessed. In trial 1, a replicated 3 × 3 Latin square design with three diets (fishmeal, ESM, and a nitrogen-free diet; two pigs per diet) and three periods were used per square. Fishmeal showed greater apparent (82.50% vs. 45.01%) and standardized (86.60% vs. 48.86%) digestibility of crude protein and all amino acids than ESM dried at 130 °C. In trial 2, eight pigs were allocated to two diets in a two-period crossover design to compare the AA digestibility of ESM dried at high (130 °C; HtESM) and low (80 °C; LtESM) temperatures. LtESM exhibited greater apparent (82.24% vs. 52.40%) and standardized (86.37% vs. 56.47%) digestibility of crude protein and more amino acids than HtESM. Collectively, the drying temperature critically determined the AA digestibility of ESM, irrespective of its reducing sugar content. Full article
(This article belongs to the Section Animal Nutrition)
23 pages, 3109 KB  
Article
Evaluation of Functional Marine Protein Hydrolysates as Fish Meal Replacements in Low-Fish-Meal Diets: Effects on Growth Performance, Feed Utilization, and Health Status of Asian Seabass (Lates calcarifer)
by Dachawat Poonnual, Siriporn Tola and Bundit Yuangsoi
Animals 2025, 15(22), 3285; https://doi.org/10.3390/ani15223285 (registering DOI) - 13 Nov 2025
Abstract
An eight-week study was conducted to evaluate the effects of dietary marine protein hydrolysates as fish meal replacements in low-fish-meal diets on the growth performance, feed utilization, and health status of Asian seabass (Lates calcarifer). The high-fish-meal (HFM) diet contained 25% [...] Read more.
An eight-week study was conducted to evaluate the effects of dietary marine protein hydrolysates as fish meal replacements in low-fish-meal diets on the growth performance, feed utilization, and health status of Asian seabass (Lates calcarifer). The high-fish-meal (HFM) diet contained 25% fish meal, while the low-fish-meal (LFM) diet replaced 60% of the fish meal with soybean meal. Three experimental diets were formulated by supplementing the LFM diet with 5% tuna hydrolysate (TH), 2% shrimp hydrolysate (SH), and 5% salmon silage (SS), each replacing an equivalent amount of fish meal. These diets were designated as LFM + TH, LFM + SH, and LFM + SS, respectively. The results showed that the LFM + TH diet significantly improved the percentage of weight gain, average daily growth, specific growth rate, protein efficiency ratio, and feed conversion ratio compared to the LFM diet (p < 0.05), without negatively affecting feed intake or metabolic markers. Histological analysis revealed improved villus length and goblet cell count in the intestine, indicating better nutrient absorption (p < 0.05). However, no significant differences were observed in hematological and immunological parameters, blood plasma metabolic markers, or carcass proximate composition (p > 0.05). Furthermore, the LFM + TH diet exhibited superior survival rates under ammonia stress, highlighting its potential to enhance stress tolerance. These findings suggest that marine protein hydrolysates, particularly 5%TH, can serve as a sustainable and efficient alternative to fish meal protein in diets with up to 60% in soybean meal compensation, promoting better growth and survival in Asian seabass. Full article
(This article belongs to the Section Aquatic Animals)
20 pages, 1246 KB  
Article
Initial Validation of NPK Fertilizer Rates and Plant Spacing for Morkhor 60, a New Soybean Variety, in Sandy Soils: Enhancing Yield and Economic Returns
by Thanaphon Patjaiko, Tidarat Monkham, Jirawat Sanitchon and Sompong Chankaew
Agriculture 2025, 15(22), 2357; https://doi.org/10.3390/agriculture15222357 (registering DOI) - 13 Nov 2025
Abstract
Soybeans (Glycine max (L.) Merr.) are a vital global crop; however, Thailand currently imports 99% of its domestic requirement, highlighting the critical need for enhanced domestic production. Morkhor 60, a new high-yielding variety, lacks optimized agronomic management for cultivation in the challenging [...] Read more.
Soybeans (Glycine max (L.) Merr.) are a vital global crop; however, Thailand currently imports 99% of its domestic requirement, highlighting the critical need for enhanced domestic production. Morkhor 60, a new high-yielding variety, lacks optimized agronomic management for cultivation in the challenging sandy soils of Northeast Thailand. This study evaluated the effects of NPK fertilizer rates and plant spacing on Morkhor 60 growth and yield through two independent experiments conducted in sandy soils over a four-season period (2022–2023). Results demonstrated that 23.44 kg ha−1 NPK provided optimal cost-effectiveness for Morkhor 60, achieving yields of 1238 kg ha−1 statistically comparable to higher rates (1286 kg ha−1) while reducing input costs by 50%. Plant spacing significantly affected productivity, with 30 × 20 cm spacing producing the highest yield (1775 kg ha−1), representing 41% improvement over the narrow spacing (20 × 20 cm: 1257 kg ha−1). The integrated management system (23.44 kg ha−1 NPK with 30 × 20 cm spacing) achieved 87.6% ground cover for moisture conservation and delivered net profits of 29,850 THB ha−1, with a benefit–cost ratio of 3.1. This research provides evidence-based agronomic recommendations for Morkhor 60 cultivation in sandy soil environments, contributing to Thailand’s soybean self-sufficiency through sustainable and economically viable production practices. Full article
(This article belongs to the Special Issue Effect of Cultivation Practices on Crop Yield and Quality)
16 pages, 5717 KB  
Article
Targeting the Galectin Axis in Osteoarthritis: Chondroprotective Effects of Dietary and Pharmacological Phytochemicals
by Katharina M. Pichler, Selina Kottinger, Bettina Rodriguez Molina, Jürgen Alphonsus, Sebastian Schmidt, Reinhard Windhager, Herbert Kaltner, Mario Rothbauer and Stefan Toegel
Molecules 2025, 30(22), 4391; https://doi.org/10.3390/molecules30224391 (registering DOI) - 13 Nov 2025
Abstract
Background/Objectives: Galectins contribute to the pathogenesis of osteoarthritis (OA) by amplifying inflammatory and catabolic signaling, yet targeted therapeutic approaches remain limited. Three Dimensional (3D) models offer a promising platform to study human OA pathophysiology and evaluate novel interventions. Methods: We established 3D pellet [...] Read more.
Background/Objectives: Galectins contribute to the pathogenesis of osteoarthritis (OA) by amplifying inflammatory and catabolic signaling, yet targeted therapeutic approaches remain limited. Three Dimensional (3D) models offer a promising platform to study human OA pathophysiology and evaluate novel interventions. Methods: We established 3D pellet cultures derived from human OA chondrocytes to investigate galectin-induced extracellular matrix (ECM) remodeling and the chondroprotective potential of phytochemicals. OA pellets were stimulated with individual galectins (Gal-1, -3, -4, -8) or a Gal-1/-3/-8 mixture, followed by co-treatment with Brazilin, Diacerein, Quercetin, Resveratrol, or Avocado-Soybean Unsaponifiables (ASU). Morphological, histological, biochemical, and gene expression analyses were performed to assess tissue integrity and molecular responses. Results: Galectin treatment induced pronounced pellet shrinkage, matrix depletion, and upregulation of matrix-degrading enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4), while suppressing matrix synthesis markers (COL2A1, COL1A1), highlighting their cooperative catabolic effects. Co-treatment with phytochemicals conferred differential protection: Brazilin and Diacerein most consistently preserved pellet size, reduced matrix-degrading gene expression, and attenuated pro-MMP-13 secretion. Resveratrol restored histological matrix density but failed to suppress pro-MMP-13 secretion. Notably, no phytochemical fully restored COL2A1 expression under galectin-induced stress. Conclusions: Our study identifies Brazilin, Diacerein, and Resveratrol as promising modulators of galectin-driven cartilage degeneration and demonstrates the translational potential of patient-derived chondrogenic pellets as a human-relevant platform for preclinical drug evaluation in OA. The 3D culture effectively recapitulates key aspects of OA pathophysiology and offers a robust system to advance therapeutic discovery targeting ECM remodeling. Full article
Show Figures

Figure 1

16 pages, 2422 KB  
Article
Cold-Pressed Walnut-Oil Adulteration with Edible Oils Detection Using Vis-NIR Spectroscopy
by Georgiana Fediuc, Mariana Spinei and Mircea Oroian
Foods 2025, 14(22), 3877; https://doi.org/10.3390/foods14223877 - 13 Nov 2025
Abstract
The aim of this study is to evaluate the usefulness of UV-Vis-NIR spectroscopy as a tool for detecting the adulteration of cold-pressed walnut oil and other edible oils (rapeseed, sunflower, and soybean oils) at varying percentages. The spectra were recorded between 200 and [...] Read more.
The aim of this study is to evaluate the usefulness of UV-Vis-NIR spectroscopy as a tool for detecting the adulteration of cold-pressed walnut oil and other edible oils (rapeseed, sunflower, and soybean oils) at varying percentages. The spectra were recorded between 200 and 1800 nm, but the analyses focused on 350–1650 nm due to high UV and NIR absorption. Color was determined in CIEL*a*b* coordinates to achieve the differences among the samples. The spectra were submitted to several pre-treatment (none, normalization, SNV, MSC, baseline/detrend, first/second derivative, and 1st-order smoothing) to improve the statistical model’s parameters. The differentiation of the samples was carried out using an unsupervised method (principal component analysis—PCA) and two supervised methods (linear discriminant analysis—LDA and partial least squares linear discriminant analysis—PLS-DA). Partial least squares regression (PLS-R) was used for predicting the degree of adulteration. Separation between the authentic and adulterated samples was visible in the PCA scores plot, primarily along the spectral regions of 420–500 nm (pigment-related absorption band) and 1150–1450 nm (lipid-associated band). PLS-DA was superior to DA for the discrimination of authentic/adulterated samples, with baseline spectra of 350–1650 nm yielding a 100% overall accuracy and near-perfect accuracy with MSC (98.48%). PLS-R was able to predict the adulteration level, depending on the pre-treatment applied. Full article
(This article belongs to the Special Issue Emerging Approaches for the Detection of Food Fraud and Adulteration)
Show Figures

Figure 1

25 pages, 5789 KB  
Article
Assessing the Alignment Between Naturally Adaptive Grain Crop Planting Patterns and Staple Food Security in China
by Zonghan Zhang, Qiuchen Hong, Yihang Sun, Jinmin Hao and Dong Ai
Foods 2025, 14(22), 3870; https://doi.org/10.3390/foods14223870 - 12 Nov 2025
Abstract
Climate change and socio-economic transformation increasingly challenge the stability of China’s food supply. This study aims to optimize grain crop layouts by integrating natural suitability and nutritional supply within a unified analytical framework. Using the MaxEnt model incorporating bioclimatic, topographic, and soil variables, [...] Read more.
Climate change and socio-economic transformation increasingly challenge the stability of China’s food supply. This study aims to optimize grain crop layouts by integrating natural suitability and nutritional supply within a unified analytical framework. Using the MaxEnt model incorporating bioclimatic, topographic, and soil variables, we simulated the natural suitability of major grain crops and compared it with actual planting patterns based on the SPAM dataset. Results revealed substantial spatial discrepancies between actual and suitable distributions, with national planting diversity index increasing by 26.42% (from 0.53 to 0.67) under suitable conditions. Wheat and maize are most suited to northern China, rice and tuber crops to southern regions, while soybean performs optimally in the northeast. Nutrient supply potential also improved substantially under the suitable scenario, with energy, protein, fat, and carbohydrate increasing by 56.9 × 108 KJ, 77.2 × 106 g, 23.3 × 106 g, and 48.6 × 106 g per million people, respectively. Among alternative structures, maize-soybean and maize-based planting structures better aligned with both natural adaptability and nutritional balance (e.g., in Inner Mongolia and Heilongjiang), whereas rice-based structure showed weaker correspondence (e.g., in Shanghai). These findings demonstrate that naturally adaptive optimization can enhance both environmental compatibility and nutritional adequacy, providing scientific guidance for developing climate-resilient and nutrition-oriented crop layout strategies in China. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Food and Nutrition Security)
Show Figures

Figure 1

22 pages, 19092 KB  
Article
Genome-Wide Identification, Expression Profile and Evolution Analysis of Importin α Gene Family in Glycine max
by Zhong-Qi Zhang, Min-Min Li, Ru-Mei Tian, Xing Cheng, Zhi-Wei Wang, Kun-Lun Li, Guan Li, Ling-Hua Lyu, Lei Liu, Na-Na Li, Longxin Wang, Kai-Hua Jia and Yong-Yi Yang
Agronomy 2025, 15(11), 2603; https://doi.org/10.3390/agronomy15112603 - 12 Nov 2025
Abstract
Importin α (IMPα) proteins are key mediators of nucleocytoplasmic transport and play crucial roles in plant development and stress adaptation. Here, we performed a genome-wide identification of the IMPα gene family in Glycine max, followed by gene structure and conserved motif analyses, [...] Read more.
Importin α (IMPα) proteins are key mediators of nucleocytoplasmic transport and play crucial roles in plant development and stress adaptation. Here, we performed a genome-wide identification of the IMPα gene family in Glycine max, followed by gene structure and conserved motif analyses, chromosomal distribution and duplication inference, synteny and selection (Ka/Ks) analyses, and expression profiling across tissues and stress conditions using public RNA-seq datasets and expression browsers. The GmIMPα genes exhibited diverse gene structures and conserved motifs, suggesting functional diversification within the family. Segmental duplication was identified as the main contributor to family expansion, and most duplicated gene pairs underwent purifying selection. Promoter analysis revealed numerous stress- and hormone-responsive cis-elements, implying complex transcriptional regulation. Expression profiling demonstrated that GmIMPα5 and GmIMPα7 were strongly induced under drought, heat, and salt stresses, indicating potential roles in abiotic stress tolerance. Collectively, our results provide a comprehensive framework for the evolution and functional divergence of the GmIMPα family in soybean and offer candidates for improving stress resilience. Full article
(This article belongs to the Special Issue Cultivar Development of Pulses Crop—2nd Edition)
Show Figures

Figure 1

25 pages, 183005 KB  
Article
Optimizing Cotton Cultivation Through Variable Rate Seeding: An Enabling Methodology
by João de Mendonça Naime, Ivani de Oliveira Negrão Lopes, Eduardo Antonio Speranza, Carlos Manoel Pedro Vaz, Júlio Cezar Franchini dos Santos, Ricardo Yassushi Inamasu, Sérgio das Chagas, Mathias Xavier Schelp and Leonardo Vecchi
AgriEngineering 2025, 7(11), 382; https://doi.org/10.3390/agriengineering7110382 - 11 Nov 2025
Abstract
This study develops a practical, on-farm methodology for optimizing cotton cultivation through Variable Rate Seeding (VRS), utilizing existing farm data and remote sensing, while minimizing operational interference. The methodology involved an experimental design across five rainfed cotton fields on a Brazilian commercial farm, [...] Read more.
This study develops a practical, on-farm methodology for optimizing cotton cultivation through Variable Rate Seeding (VRS), utilizing existing farm data and remote sensing, while minimizing operational interference. The methodology involved an experimental design across five rainfed cotton fields on a Brazilian commercial farm, testing four seeding rates (90%, 100%, 110%, 120%) within grid cells using a 4 × 4 Latin square design. Management zones (MZs) were defined using existing soil clay content and elevation data, augmented by twelve vegetation indices from Sentinel-2 satellite imagery and K-Means clustering. Statistical analysis evaluated plant population density’s effect on cotton yield and its association with MZs. For the 2023/2024 season, results showed no positive yield response to increasing plant density above field averages, with negative responses in many plots (e.g., 84% in Field A), suggesting potential gains from reducing rates. The association between population density effect classes and MZs was highly significant with moderate to relatively strong Cramer’s V values (up to 0.47), indicating MZs effectively distinguished response areas. Lower clay content consistently correlated with yield losses at higher densities. This work empowers farm managers to conduct their own site-specific experimentation for optimal seed populations, enhancing precision agriculture and resource efficiency. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Graphical abstract

18 pages, 864 KB  
Article
Extrusion Processing of Fungal-Contaminated Cereals as a Method for Spore Reduction and Binder Development in Feed Materials
by Paweł Cwalina, Sławomir Obidziński, Małgorzata Kowczyk-Sadowy, Aneta Sienkiewicz and Jacek Mazur
Materials 2025, 18(22), 5117; https://doi.org/10.3390/ma18225117 - 11 Nov 2025
Abstract
The increasing demand for safe and durable feed materials highlights the need for processing methods that simultaneously enhance physical quality and reduce microbiological contamination. Extrusion technology offers a promising solution by combining thermal and mechanical effects that improve binding performance while inactivating fungal [...] Read more.
The increasing demand for safe and durable feed materials highlights the need for processing methods that simultaneously enhance physical quality and reduce microbiological contamination. Extrusion technology offers a promising solution by combining thermal and mechanical effects that improve binding performance while inactivating fungal spores present in cereal grains. In this study, maize, barley, sorghum, soybean, and wheat grains naturally contaminated with fungal spores were subjected to extrusion prior to pelleting. The physical properties of the resulting pellets, including bulk density, physical density, and kinetic durability, were evaluated and compared with those obtained from ground (non-extruded) grains. Pellets containing extruded grains generally exhibited higher physical density, with the highest value recorded for pellets containing extruded mould-infected sorghum grain (1179.82 kg·m−3) and the lowest for pellets containing healthy soybeans (1063.63 kg·m−3). The kinetic durability of extruded cereal pellets increased on average by 4.02%, enhancing their resistance to mechanical stress during transport and storage. Microbiological analyses confirmed a significant reduction in fungal colony-forming units (CFUs) after extrusion and pelleting, ranging from 27% to 65%, depending on the cereal type. The most pronounced reduction was observed in maize-based pellets contaminated with mould spores, decreasing from 1.70 × 105 to 6.03 × 104 CFU·g−1. These results demonstrate that extrusion is an effective method for producing cereal-based feed materials with improved physical quality and enhanced microbiological safety, contributing to more sustainable feed production. Full article
Show Figures

Figure 1

14 pages, 7725 KB  
Article
Conservation and Divergence of E(z) Genes in Green Plants
by Xiaolong Gan, Zihua Chen, Liangsheng Zhang and Xiaojun Chang
Plants 2025, 14(22), 3444; https://doi.org/10.3390/plants14223444 - 11 Nov 2025
Viewed by 56
Abstract
Polycomb Group (PcG) proteins, particularly E(z) (Enhancer of Zeste) genes, play essential roles in transcriptional repression and developmental regulation. To investigate their evolutionary history, we conducted a comprehensive comparative genomic analysis of E(z) homologs across green plants. Phylogenetic analysis revealed that E(z) genes [...] Read more.
Polycomb Group (PcG) proteins, particularly E(z) (Enhancer of Zeste) genes, play essential roles in transcriptional repression and developmental regulation. To investigate their evolutionary history, we conducted a comprehensive comparative genomic analysis of E(z) homologs across green plants. Phylogenetic analysis revealed that E(z) genes are highly conserved, predominantly occurring as single copies in green algae and early land plants. In seed plants, however, E(z) homologs diverged into two major clades, CLF and SWN, likely originating from an ancient duplication predating seed plant diversification. Conserved domain and motif analyses showed that while all E(z) proteins contain the hallmark SET domain, certain lineages also harbor CXC and SANT domains. Moreover, lineage-specific motif divergence was observed, suggesting functional diversification. In angiosperms, further duplications shaped the SWN lineage: in Brassicaceae, SWN genes split into SWN and MEA subclades, whereas in Fabaceae, SWN genes diverged into SWN1 and SWN2. Structural comparisons revealed that both Brassicaceae MEA and Fabaceae SWN2 proteins independently lost approximately 200 amino acids in the central region, indicating convergent structural modifications. Molecular evolutionary analysis showed that Fabaceae SWN1 genes are under purifying selection, consistent with retention of ancestral functions, whereas SWN2 genes experienced strong positive selection, implying functional innovation. Expression profiling of soybean E(z) genes further supported this scenario: SWN1 is broadly expressed across tissues, while SWN2 expression is restricted to the heart-shaped embryo. This pattern mirrors Arabidopsis MEA, suggesting that Fabaceae SWN2 may have evolved imprinted gene functions critical for seed development. Together, our results highlight the evolutionary conservation of E(z) genes in plants and reveal how gene duplication and lineage-specific divergence have driven functional specialization, particularly in Fabaceae SWN2. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

32 pages, 6525 KB  
Article
High-Resolution Crop Mapping and Suitability Assessment in China’s Three Northeastern Provinces (2000–2023): Implications for Optimizing Crop Layout
by Xiaoxiao Wang, Huafu Zhao, Guanying Zhao, Xuzhou Qu, Congjie Cao, Jiacheng Qian, Sheng Fu, Tao Wang and Huiqin Han
Agronomy 2025, 15(11), 2587; https://doi.org/10.3390/agronomy15112587 - 10 Nov 2025
Viewed by 103
Abstract
The three northeastern provinces of China are the country’s most important grain-producing region, particularly for maize, soybean, and rice, and form its largest commercial grain base. Over the past two decades, cropping structures in this region have undergone notable shifts driven by both [...] Read more.
The three northeastern provinces of China are the country’s most important grain-producing region, particularly for maize, soybean, and rice, and form its largest commercial grain base. Over the past two decades, cropping structures in this region have undergone notable shifts driven by both climate change and human activities. Generating long-term, high-resolution maps of multi-crop distribution and evaluating their suitability is essential for understanding cropping dynamics, optimizing land use, and promoting sustainable agriculture. In this study, we integrated multi-source satellite imagery from Landsat and Sentinel-2 to map the distribution of rice, maize, and soybean from 2000 to 2023 using a Random Forest classifier. A crop suitability assessment framework was developed by combining a multi-criteria evaluation model with the MaxEnt model. Reliable training samples were derived by overlaying suitability evaluation results with stable crop growth areas, and environmental variables—including climate, topography, soil, hydrology, and anthropogenic factors—were incorporated into MaxEnt to assess suitability. Furthermore, the spatial consistency between actual cultivation and suitability was evaluated to identify areas of misallocated land use. The results show that: (1) the six classification maps achieved an average overall accuracy of 91.05% and a Kappa coefficient of 0.857; (2) the cultivation area of all three crops expanded, with maize showing the largest increase, followed by soybean and rice, and the dominant conversion being from soybean to maize; (3) suitability areas ranked as soybean (376,692 km2) > maize (329,056 km2) > rice (311,869 km2), with substantial spatial overlap, particularly between maize and soybean, suggesting strong competition; and (4) in 2023, highly suitable zones accounted for 57.39% of rice, 39.69% of maize, and 28.89% of soybean cultivation, indicating a closer alignment between actual distribution and suitability for rice, weaker for maize, and weakest for soybean, whose suitable zones were often displaced by rice and maize. These findings provide insights to guide farmers in optimizing crop allocation and offer a scientific basis for policymakers in designing cultivated land protection strategies in Northeast China. Full article
Show Figures

Figure 1

16 pages, 1442 KB  
Article
Weed Management in Edamame Soybean Production
by Natalija Pavlović, Željko Dolijanović, Milena Simić, Vesna Dragičević, Miodrag Tolimir, Margarita S. Dodevska and Milan Brankov
Plants 2025, 14(22), 3438; https://doi.org/10.3390/plants14223438 - 10 Nov 2025
Viewed by 88
Abstract
Weeds are among the primary constraints reducing soybean productivity, and their effective control is especially important in edamame, a vegetable soybean valued for its nutritional potential. As chemical control remains the dominant strategy, rational herbicide use is essential. This study aimed to evaluate [...] Read more.
Weeds are among the primary constraints reducing soybean productivity, and their effective control is especially important in edamame, a vegetable soybean valued for its nutritional potential. As chemical control remains the dominant strategy, rational herbicide use is essential. This study aimed to evaluate the response of two edamame varieties (Chiba Green and Midori Giant) and the effectiveness of applied herbicides in weed control during the 2022–2024 growing seasons. Treatments included the following: pre-emergence herbicides (S-metolachlor + metribuzin) (H1); pre- (S-metolachlor + metribuzin) and post-emergence herbicides (imazamox + cycloxydim) (H2); and an untreated control (H0). The growing season influenced pod yield and biomass, with the highest yield recorded in 2022 (11.7 t ha−1), while variety affected only pod yield: on average, Midori Giant outperformed Chiba Green (10.6 vs. 6.1 t ha−1). Herbicide treatment affected weed dry biomass (3.3 g m−2 in H2 compared to 341.8 g m−2 in H0) and pod yield (4.3 t ha−1 in H0 for Chiba Green compared to 11.9 t ha−1 in H2 for Midori Giant). The results indicate that pre-emergence herbicides could satisfactorily reduce weed infestation under suitable meteorological conditions. The combined application of pre- and post-emergence herbicides increases production security (particularly in seasons with higher weed infestation), likely by extending the weed control period through pre- and post-emergence herbicide combinations, targeting different weed species during the soybean vegetative period. In addition, weed diversity was associated with a yield increase in Midori Giant. This research provides practical information and options for weed management in edamame production in the Western Balkan region. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 255 KB  
Article
The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes
by Megan M. Bauer, Tuoying Ao, Jacqueline P. Jacob, Michael J. Ford, Anthony J. Pescatore, Ronan F. Power and Sunday A. Adedokun
Animals 2025, 15(22), 3254; https://doi.org/10.3390/ani15223254 - 10 Nov 2025
Viewed by 132
Abstract
This study evaluated the performance and energy and nutrient utilization of broiler chickens fed corn-soybean meal-based diets supplemented with a naturally fermented enzyme complex containing xylanase and phytase. This was evaluated using 300 one-day-old male Cobb broiler chicks in a randomized complete block [...] Read more.
This study evaluated the performance and energy and nutrient utilization of broiler chickens fed corn-soybean meal-based diets supplemented with a naturally fermented enzyme complex containing xylanase and phytase. This was evaluated using 300 one-day-old male Cobb broiler chicks in a randomized complete block design with five dietary treatments replicated 10 times with 6 chicks per replicate. The treatments consisted of a positive control (PC) group containing commercially recommended energy and nutrient levels, a negative control (NC) group with reduced metabolizable energy, calcium, and available phosphorus, and three levels of exogenous enzyme supplementation to the NC diet at 150, 200, 250 mg/kg, respectively. At the end of the trial, ileal digesta and excreta were collected for nutrient and energy digestibility and utilization determination, while tibia bones were collected for bone ash determination. The data was analyzed using Proc GLM of SAS 9.4 v 4. Enzyme supplementation quadratically increased (p < 0.05) average daily gain, average daily feed intake (ADFI), and feed efficiency during days 9–21. There was also a linear increase (p < 0.01) between enzyme level and ADFI during days 0–21. Compared with birds fed the PC diet, chickens fed the NC diet had lower (p < 0.01) utilization of DM, N, Ca, P, and energy, as well as lower (p < 0.01) apparent ileal digestibility of essential and non-essential amino acids (AA). Enzyme supplementation level showed a quadratic relation (p < 0.01) with the utilization of DM, N, Ca, P, and AMEn, as well as with the apparent ileal digestibility of essential and non-essential AA. A quadratic relationship was also observed for apparent ileal digestibility of DM, N, P, and digestible energy, except for Ca, where the relationship was linear (p < 0.001). Bone breaking strength and bone ash quadratically correlated (p < 0.05) with the level of enzyme supplementation. The results from this study indicated that the supplementation of exogenous enzyme to a corn–soybean meal-based diet resulted in benefits to performance, nutrient digestibility and utilization, and bone mineralization of broiler chicks compared to birds on the NC diet. Full article
(This article belongs to the Section Animal Nutrition)
17 pages, 508 KB  
Review
Edible Oils from Health to Sustainability: Influence of the Production Processes in the Quality, Consumption Benefits and Risks
by Viviane de Souza Silva, Luna Valentina Angulo Arias, Franciane Colares Souza Usberti, Rafael Augustus de Oliveira and Farayde Matta Fakhouri
Lipidology 2025, 2(4), 21; https://doi.org/10.3390/lipidology2040021 - 10 Nov 2025
Viewed by 93
Abstract
This systematic review examines the impact of vegetable oil consumption, such as extra virgin olive, olive, soybean, palm olein, corn, and camellia seed oils, on both human and animal health, alongside factors influencing oil quality and safety. A variety of studies were included, [...] Read more.
This systematic review examines the impact of vegetable oil consumption, such as extra virgin olive, olive, soybean, palm olein, corn, and camellia seed oils, on both human and animal health, alongside factors influencing oil quality and safety. A variety of studies were included, such as clinical trials, cohort studies, animal experiments, and reports on production methods and contamination (polycyclic aromatic hydrocarbons (PAHs) and heavy metals). The literature search was performed in scientific databases indexed up to September 2025, and risk of bias was assessed using specific tools appropriate for each study design. The findings suggest that, among the oils studied, extra virgin olive oil showed the most consistent benefits, including improvements in endothelial function, lipid profiles, weight management, and reduced mortality in humans. Animal studies corroborate hepatoprotective effects and weight regulation benefits. Oil quality is influenced by genetic, environmental, and technological factors, including cultivar selection, pollination, post-harvest handling, and extraction techniques (cold, hot, DIC, MFA, encapsulation) and refining processes, which can affect both nutritional benefits and contaminant levels. Although contaminants such as PAHs and heavy metals (Cd, Pb, As) are generally below regulatory thresholds, some contexts may present health risks. High-quality vegetable oils confer cardiovascular, metabolic, and hepatic benefits. However, their contribution to public health relies on strict production practices, continuous monitoring of contaminants, and the implementation of technological innovations to ensure both safety and optimal health outcomes. Full article
Show Figures

Figure 1

20 pages, 6068 KB  
Article
Numerical Simulation and Orthogonal Test of Droplet Impact on Soybean Leaves Based on VOF Method and High-Speed Camera Technology
by Shuangshuang Wu, Changxi Liu, Hao Sun, Jun Hu, Yufei Li and Wei Guo
Agronomy 2025, 15(11), 2578; https://doi.org/10.3390/agronomy15112578 - 9 Nov 2025
Viewed by 173
Abstract
The multi-factor coupling mechanism of droplet impact dynamics remains unclear due to insufficient analysis of leaf structure–droplet interaction and inadequate integration of simulations and experiments, limiting precision pesticide application. To address this, we developed a droplet impact model using the Volume of Fluid [...] Read more.
The multi-factor coupling mechanism of droplet impact dynamics remains unclear due to insufficient analysis of leaf structure–droplet interaction and inadequate integration of simulations and experiments, limiting precision pesticide application. To address this, we developed a droplet impact model using the Volume of Fluid (VOF) method combined with high-speed camera experiments and systematically analyzed the effects of impact velocity, angle, and droplet size on slip behavior via response surface methodology. Methodologically, we innovatively integrated 3D reverse modeling technology to reconstruct soybean leaf microstructures, overcoming the limitations of traditional planar models that ignore topological features. This approach, coupled with the VOF method, enabled precise tracking of droplet spreading, retraction, and slip processes. Scientifically, our study advances beyond previous single-factor analyses by revealing the synergistic mechanisms of impact parameters through response surface methodology, identifying impact angle as the most critical factor (42.3% contribution), followed by velocity (28.7%) and droplet size (19.5%). Model validation demonstrated high consistency between simulation predictions and experimental observations, confirming its reliability. Practically, the optimized parameter combination (90° impact angle, 1.5 m/s velocity, and 300 μm droplet size) reduced slip displacement by over 50% compared to non-optimized conditions, providing a quantitative tool for spray parameter control. This work enhances the understanding of droplet–leaf interaction mechanisms and offers technical guidance for improving pesticide deposition efficiency in agricultural production. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop