Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Trastuzumab (Tz)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2918 KB  
Article
Surface Engineering of Natural Killer Cells with Lipid-Based Antibody Capture Platform for Targeted Chemoimmunotherapy
by Su Yeon Lim, Yeongbeom Kim, Hongbin Kim, Seungmin Han, Jina Yun, Hyun-Ouk Kim, Suk-Jin Ha, Sehyun Chae, Young-Wook Won and Kwang Suk Lim
Pharmaceutics 2025, 17(10), 1285; https://doi.org/10.3390/pharmaceutics17101285 - 1 Oct 2025
Viewed by 824
Abstract
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed [...] Read more.
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed an antibody capture protein (ACP)-based surface engineering platform that enables the rapid, reversible, and non-genetic functionalization of NK cells with therapeutic antibodies or ADCs. This approach uses a DMPE-PEG-lipid conjugate to anchor thiolated protein A (ACP) to the NK cell membrane via hydrophobic insertion, thereby stably and selectively binding to the Fc region of IgG molecules. Using this strategy, we developed ACP-modified NK cells (AC-NKs) that can selectively capture therapeutic antibodies (trastuzumab (TZ), trastuzumab-emtansine (T-DM1), and sacituzumab (SZ)) pre-bound to each target antigen on tumor cells and induce antigen-specific cytotoxic responses. The resulting AC-NKs exhibited enhanced tumor recognition and cytotoxicity against HER2-positive and Trop-2-positive cancer cells in vitro. Compared with conventional combination therapies, AC-NKs enhanced immune activation, as demonstrated by effective delivery of cytotoxic agents, enhanced cancer cell engagement, and upregulation of CD107a expression. Notably, the system supports multiple antigen targeting and tunable antibody loading, enabling adaptation to tumor heterogeneity and resistant phenotypes. This platform might also provide a simple, scalable, and safe method for rapidly developing programmable immune cell therapies without genetic modification. Its versatility supports multi-antigen targeting and broad applicability across NK and T cell therapies, offering a promising path toward personalized, off-the-shelf chemoimmunotherapy. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Targeted Immunotherapy)
Show Figures

Figure 1

19 pages, 2614 KB  
Article
Multiparametric Analysis of PET and Quantitative MRI for Identifying Intratumoral Habitats and Characterizing Trastuzumab-Induced Alterations
by Ameer Mansur, Carlos Gallegos, Andrew Burns, Lily Watts, Seth Lee, Patrick Song, Yun Lu and Anna Sorace
Cancers 2025, 17(15), 2422; https://doi.org/10.3390/cancers17152422 - 22 Jul 2025
Cited by 1 | Viewed by 862
Abstract
Background/Objectives: This study investigates the utility of multiparametric PET/MRI in delineating changes in physiologically distinct intratumoral habitats during trastuzumab-induced alterations in a preclinical HER2+ breast cancer model. Methods: By integrating diffusion-weighted MRI, dynamic contrast-enhanced MRI, [18F]Fluorodeoxyglucose- and [18F]Fluorothymidine-PET, voxel-wise [...] Read more.
Background/Objectives: This study investigates the utility of multiparametric PET/MRI in delineating changes in physiologically distinct intratumoral habitats during trastuzumab-induced alterations in a preclinical HER2+ breast cancer model. Methods: By integrating diffusion-weighted MRI, dynamic contrast-enhanced MRI, [18F]Fluorodeoxyglucose- and [18F]Fluorothymidine-PET, voxel-wise parametric maps were generated capturing cellular density, vascularity, metabolism, and proliferation. BT-474 tumor-bearing mice have high expression of HER2 and, in response to trastuzumab, an anti-HER2 antibody, effectively show changes in proliferation and tumor microenvironment alterations that result in decreases in tumor volume through time. Results: Single imaging metrics and changes in metrics were incapable of identifying treatment-induced alterations early in the course of therapy (day 4) prior to changes in tumor volume. Hierarchical clustering identified five distinct tumor habitats, which enabled longitudinal assessment of early treatment response. Tumor habitats were defined based on imaging metrics related to biology and categorized as highly vascular (HV), hypoxic responding (HRSP), transitional zone (TZ), active tumor (ATMR) and responding (RSP). The HRSP cluster volume significantly decreased in trastuzumab-treated tumors compared to controls by day 4 (p = 0.015). The volume of ATMR cluster was significantly different at baseline between cohorts (p = 0.03). The TZ cluster, indicative of regions transitioning more to necrosis, significantly decreased in treated tumors (p = 0.031), suggesting regions had already transitioned. Multiparametric image clustering showed a significant positive linear correlation with histological multiparametric mapping, with R2 values of 0.56 (HRSP, p = 0.013, 0.64 (ATMR, p = 0.0055), and 0.49 (responding cluster, p = 0.024), confirming the biological relevance of imaging-derived clusters. Conclusions: These findings highlight the potential utility of multiparametric PET/MRI to capture biological alterations prior to any single imaging metric which has potential for better understanding longitudinal changes in biology, stratifying tumors based on those changes, optimizing therapeutic monitoring and advancing precision oncology. Full article
(This article belongs to the Special Issue Application of Advanced Biomedical Imaging in Cancer Treatment)
Show Figures

Figure 1

19 pages, 2319 KB  
Article
Proteomic Characterization of a 3D HER2+ Breast Cancer Model Reveals the Role of Mitochondrial Complex I in Acquired Resistance to Trastuzumab
by Ivana J. Tapia, Davide Perico, Virginia J. Wolos, Marcela S. Villaverde, Marianela Abrigo, Dario Di Silvestre, Pierluigi Mauri, Antonella De Palma and Gabriel L. Fiszman
Int. J. Mol. Sci. 2024, 25(13), 7397; https://doi.org/10.3390/ijms25137397 - 5 Jul 2024
Cited by 5 | Viewed by 2213
Abstract
HER2-targeted therapies, such as Trastuzumab (Tz), have significantly improved the clinical outcomes for patients with HER2+ breast cancer (BC). However, treatment resistance remains a major obstacle. To elucidate functional and metabolic changes associated with acquired resistance, we characterized protein profiles of BC Tz-responder [...] Read more.
HER2-targeted therapies, such as Trastuzumab (Tz), have significantly improved the clinical outcomes for patients with HER2+ breast cancer (BC). However, treatment resistance remains a major obstacle. To elucidate functional and metabolic changes associated with acquired resistance, we characterized protein profiles of BC Tz-responder spheroids (RSs) and non-responder spheroids (nRSs) by a proteomic approach. Three-dimensional cultures were generated from the HER2+ human mammary adenocarcinoma cell line BT-474 and a derived resistant cell line. Before and after a 15-day Tz treatment, samples of each condition were collected and analyzed by liquid chromatography–mass spectrometry. The analysis of differentially expressed proteins exhibited the deregulation of energetic metabolism and mitochondrial pathways. A down-regulation of carbohydrate metabolism and up-regulation of mitochondria organization proteins, the tricarboxylic acid cycle, and oxidative phosphorylation, were observed in nRSs. Of note, Complex I-related proteins were increased in this condition and the inhibition by metformin highlighted that their activity is necessary for nRS survival. Furthermore, a correlation analysis showed that overexpression of Complex I proteins NDUFA10 and NDUFS2 was associated with high clinical risk and worse survival for HER2+ BC patients. In conclusion, the non-responder phenotype identified here provides a signature of proteins and related pathways that could lead to therapeutic biomarker investigation. Full article
(This article belongs to the Special Issue Mass Spectrometric Proteomics 3.0)
Show Figures

Figure 1

16 pages, 2371 KB  
Article
An Efficient Method for Vault Nanoparticle Conjugation with Finely Adjustable Amounts of Antibodies and Small Molecules
by Giulia Tomaino, Camilla Pantaleoni, Annalisa D’Urzo, Carlo Santambrogio, Filippo Testa, Matilde Ciprandi, Davide Cotugno, Gianni Frascotti, Marco Vanoni and Paolo Tortora
Int. J. Mol. Sci. 2024, 25(12), 6629; https://doi.org/10.3390/ijms25126629 - 16 Jun 2024
Cited by 1 | Viewed by 3002
Abstract
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which [...] Read more.
Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which are produced by the assembly of the sole MVP. Here, we have expressed in Komagataella phaffi and purified an MVP variant carrying a C-terminal Z peptide (vault-Z), which can tightly bind an antibody’s Fc portion, in view of targeted delivery. Via surface plasmon resonance analysis, we could determine a 2.5 nM affinity to the monoclonal antibody Trastuzumab (Tz)/vault-Z 1:1 interaction. Then, we characterized the in-solution interaction via co-incubation, ultracentrifugation, and analysis of the pelleted proteins. This showed virtually irreversible binding up to an at least 10:1 Tz/vault-Z ratio. As a proof of concept, we labeled the Fc portion of Tz with a fluorophore and conjugated it with the nanoparticle, along with either Tz or Cetuximab, another monoclonal antibody. Thus, we could demonstrate antibody-dependent, selective uptake by the SKBR3 and MDA-MB 231 breast cancer cell lines. These investigations provide a novel, flexible technological platform that significantly extends vault-Z’s applications, in that it can be stably conjugated with finely adjusted amounts of antibodies as well as of other molecules, such as fluorophores, cell-targeting peptides, or drugs, using the Fc portion as a scaffold. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine)
Show Figures

Graphical abstract

13 pages, 259 KB  
Article
Echocardiographic Assessment of Left Ventricular Function in Three Oncologic Therapeutic Modalities in Women with Breast Cancer: The ONCO-ECHO Multicenter Study
by Tomasz Gąsior, Beata Zaborska, Paweł Stachowiak, Małgorzata Sikora-Frąc, Katarzyna Mizia-Stec, Jarosław Kasprzak, Artur Bodys, Julia Bijoch, Adrianna Szmagała, Dariusz A. Kosior and Edyta Płońska-Gościniak
J. Clin. Med. 2024, 13(9), 2543; https://doi.org/10.3390/jcm13092543 - 26 Apr 2024
Cited by 4 | Viewed by 2223
Abstract
Background: Oncological treatment of breast cancer may be associated with adverse effects on myocardial function. Objectives: The objective of this study was to compare the influence of three oncological treatment methods of intervention on the echocardiographic (ECHO) parameters of left ventricular [...] Read more.
Background: Oncological treatment of breast cancer may be associated with adverse effects on myocardial function. Objectives: The objective of this study was to compare the influence of three oncological treatment methods of intervention on the echocardiographic (ECHO) parameters of left ventricular function. Materials and Methods: One hundred and fifty-five women with breast cancer were divided into three groups depending on the type of therapy used: group I (AC)—anthracyclines; group II (AC + TZ)—anthracyclines + trastuzumab; and group III (RTls+)—anthracyclines with or without trastuzumab + left-sided radiotherapy. Prospective ECHO examinations were performed at baseline and every 3 months, up to 12 months from the start of the therapy. Patients with a history of chemotherapy or who were diagnosed with heart disease were not included in the study. Results: Out of 155 patients, 3 died due to cancer as the primary cause, and 12 withdrew their consent for further observation. Baseline systolic and diastolic ECHO parameters did not differ between the analyzed groups. Cardiotoxicity, according to the LVEF criteria, occurred during follow-up in 20 patients (14.3%), irrespective of the treatment method used. Diastolic echocardiographic parameters did not change significantly after 12 months in each group, except for the left atrial volume index (LAVi), which was significantly higher in the AC + TZ compared to the values in the RTls+ group. Conclusions: All three oncologic therapeutic modalities in women with breast cancer showed no significant differences in relation to the incidence of echocardiographic cardiotoxicity criterion; however, transient systolic decrease in LVEF was most frequently observed in the AC + TZ therapeutic regimen. Left-sided radiotherapy was not associated with excess left ventricular systolic and diastolic dysfunction during a 12-month follow-up period. The predictors of negative changes in diastolic parameters included age and combined anthracycline and trastuzumab therapy. Full article
20 pages, 4055 KB  
Article
Dual-Targeted Therapy in HER2-Overexpressing Breast Cancer with Trastuzumab and Novel Cholesterol-Based Nioplexes Silencing Mcl-1
by Supusson Pengnam, Praneet Opanasopit, Theerasak Rojanarata, Boon-ek Yingyongnarongkul, Chopaka Thongbamrer and Samarwadee Plianwong
Pharmaceutics 2023, 15(10), 2424; https://doi.org/10.3390/pharmaceutics15102424 - 4 Oct 2023
Cited by 11 | Viewed by 3156
Abstract
The challenge in HER2-overexpressing breast cancer therapy lies in creating an effective target therapy to overcome treatment resistance. Monoclonal antibodies and target gene silencing by siRNA are two potential strategies that have been widely developed for treating HER2-positive breast cancer. The siRNA delivery [...] Read more.
The challenge in HER2-overexpressing breast cancer therapy lies in creating an effective target therapy to overcome treatment resistance. Monoclonal antibodies and target gene silencing by siRNA are two potential strategies that have been widely developed for treating HER2-positive breast cancer. The siRNA delivery system is a crucial factor that influences siRNA therapy’s success. In this study, lipid-based nanoparticles (cationic niosomes) composed of different cholesterol-based cationic lipids were formulated and characterized for delivering siRNA into HER2-overexpressing breast cancer cells. Niosomes containing a trimethylammonium headgroup showed the highest siRNA delivery efficiency with low toxicity. The myeloid cell leukemia-1 (Mcl-1) siRNA nioplex treatment significantly decreased mRNA expression and breast cancer cell growth. Dual-targeted therapy, consisting of treatment with an Mcl-1 siRNA nioplex and trastuzumab (TZ) solution, noticeably promoted cell-growth inhibition and apoptosis. The synergistic effect of dual therapy was also demonstrated by computer modeling software (CompuSyn version 1.0). These findings suggest that the developed cationic niosomes were effective nanocarriers for siRNA delivery in breast cancer cells. Furthermore, the Mcl-1 nioplex/TZ dual treatment establishes a synergistic outcome that may have the potential to treat HER2-overexpressing breast cancer. Full article
Show Figures

Graphical abstract

28 pages, 7140 KB  
Article
Potential Biomarkers Associated with Prognosis and Trastuzumab Response in HER2+ Breast Cancer
by Ana Carla Castro-Guijarro, Angel Matias Sanchez and Marina Inés Flamini
Cancers 2023, 15(17), 4374; https://doi.org/10.3390/cancers15174374 - 1 Sep 2023
Cited by 3 | Viewed by 3485
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15–25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as [...] Read more.
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15–25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as monoclonal antibodies (trastuzumab, Tz), antibody–drug conjugates (ado-trastuzumab emtansine, T-DM1), and pharmacological inhibitors of tyrosine kinase activity (lapatinib, Lp). Although Tz, the standard treatment, has significantly improved the prognosis of patients, resistance still affects a significant population of women and is currently a major challenge in clinical oncology. Therefore, this study aims to identify potential biomarkers to predict disease progression (prognostic markers) and the efficacy of Tz treatment (predictive markers) in patients with HER2+ BC. We hypothesize that proteins involved in cell motility are implicated in Tz-resistance. We aim to identify alterations in Tz-resistant cells to guide more efficient oncologic decisions. By bioinformatics, we selected candidate proteins and determined how their expression, localization, and the process they modulate were affected by anti-HER2 treatments. Next, using HER2+ BC patients’ data, we assessed these proteins as prognostic and predictive biomarkers. Finally, using Tz-resistant cells, we evaluated their roles in Tz response. We identified deregulated genes associated with cell motility in Tz/T-DM1-resistant vs. -sensitive cells. We showed that Tz, T-DM1, and Lp decrease cell viability, and their effect is enhanced in combinations. We determined synergism between Tz/T-DM1 and Lp, making possible a dose reduction of each drug to achieve the same therapeutic effect. We found that combinations (Tz/T-DM1 + Lp) efficiently inhibit cell adhesion and migration. Furthermore, we demonstrated the induction of FAK nuclear and cortactin peri-nuclear localization after T-DM1, Lp, and Tz/T-DM1 + Lp treatments. In parallel, we observed that combined treatments downregulate proteins essential for metastatic dissemination, such as SRC, FAK, and paxillin. We found that low vinculin (VCL) and cortactin (CTTN) mRNA expression predicts favorable survival rates and has diagnostic value to discriminate between Tz-sensible and Tz-resistant HER2+ BC patients. Finally, we confirmed that vinculin and cortactin are overexpressed in Tz-resistance cells, SKBR3-RTz. Moreover, we found that Tz plus FAK/paxillin/cortactin-silencing reduced cell adhesion/migration capacity in Tz-sensitive and -resistant cells. In conclusion, we demonstrate that combined therapies are encouraging since low doses of Tz/T-DM1 + Lp inhibit metastatic processes by downregulating critical protein expression and affecting its subcellular localization. We propose that vinculin and cortactin might contribute to Tz-sensibility/resistance in BC cells. Finally, we identify potential prognostic and predictive biomarkers that are promising for personalized BC management that would allow efficient patient selection in order to mitigate resistance and maximize the safety and efficacy of anti-HER2 therapies. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 3979 KB  
Article
Lipid Metabolism Reprogramming and Trastuzumab Resistance in Breast Cancer Cell Lines Overexpressing the ERBB2 Membrane Receptor
by Katia Cortese, Marco Ponassi, Aldo Profumo, Gabriela Coronel Vargas, Erika Iervasi, Maria Cristina Gagliani, Grazia Bellese, Sara Tavella and Patrizio Castagnola
Membranes 2023, 13(6), 540; https://doi.org/10.3390/membranes13060540 - 23 May 2023
Cited by 4 | Viewed by 2958
Abstract
Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this [...] Read more.
Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer. Full article
(This article belongs to the Special Issue Membranes and Membrane Processes in Medicine)
Show Figures

Figure 1

9 pages, 262 KB  
Article
FGFR1 Amplification and Response to Neoadjuvant Anti-HER2 Treatment in Early HER2-Positive Breast Cancer
by María Gaibar, Apolonia Novillo, Alicia Romero-Lorca, Diego Malón, Beatriz Antón, Amalia Moreno and Ana Fernández-Santander
Pharmaceutics 2022, 14(2), 242; https://doi.org/10.3390/pharmaceutics14020242 - 20 Jan 2022
Cited by 6 | Viewed by 3266
Abstract
HER2-positive breast cancer (BC) is an aggressive subtype that affects 20–25% of BC patients. For these patients, neoadjuvant therapy is a good option that targets a pathological complete response (pCR) and more breast-conserving surgery. In effect, the outcomes of patients with HER2-positive BC [...] Read more.
HER2-positive breast cancer (BC) is an aggressive subtype that affects 20–25% of BC patients. For these patients, neoadjuvant therapy is a good option that targets a pathological complete response (pCR) and more breast-conserving surgery. In effect, the outcomes of patients with HER2-positive BC have dramatically improved since the introduction of anti-HER2 antibodies such as trastuzumab (TZ) and/or pertuzumab (PZ) added to chemotherapy. This study sought to examine whether correlation exists between copy number variations (CNVs) in several genes related to the PI3K/AKT pathway (HER2, FGFR1, PIK3CA, AKT3 and MDM2) and the efficacy of anti-HER2 neoadjuvant treatment in patients with early HER2-positive BC. Forty-nine patients received TZ or PZ/TZ and chemotherapy as neoadjuvant treatment. Gene CNVs were determined by quantitative polymerase chain reaction on paraffin-embedded biopsy specimens. The response to 6 months of therapy was assessed by Miller–Payne grading of the tumor on surgical resection; grades 4 and 5, indicating >90% tumor reduction, were defined as a good response. A good response was shown by 64.5% and a pCR by 31.2% of patients. When stratified by anti-HER2 antibody received and gene CNV, it was found that patients with FGFR1 gene amplification or those with FGFR1 amplification treated with TZ alone showed a poor response (p = 0.024 and p = 0.037, respectively). In the subset of patients treated with TZ/PZ combined, the pCR rate was significantly lower among those showing FGFR1 amplification (p = 0.021). Although based on a small sample size, our findings suggest that patients with FGFR1 amplification might benefit less from anti-HER2 antibody therapy. Full article
(This article belongs to the Special Issue Association Studies in Clinical Pharmacogenetics)
16 pages, 1349 KB  
Article
A Semi Rigid Novel Hydroxamate AMPED-Based Ligand for 89Zr PET Imaging
by Lisa Russelli, Francesco De Rose, Loredana Leone, Sybille Reder, Markus Schwaiger, Calogero D’Alessandria and Lorenzo Tei
Molecules 2021, 26(19), 5819; https://doi.org/10.3390/molecules26195819 - 25 Sep 2021
Cited by 5 | Viewed by 2659
Abstract
In this work, we designed, developed, characterized, and investigated a new chelator and its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered heterocycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with [...] Read more.
In this work, we designed, developed, characterized, and investigated a new chelator and its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered heterocycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with the aim to increase the rigidity of the 89Zr complex by using N-methyl-N-(hydroxy)succinamide or N-methyl-N-(hydroxy)glutaramide pendant arms attached to the cyclic structure. N-methylhydroxamate groups are the donor groups chosen to efficiently coordinate 89Zr. After in vitro stability tests, we selected the chelator with longer arms, AAZTHAG, as the best complexing agent for 89Zr presenting a stability of 86.4 ± 5.5% in human serum (HS) for at least 72 h. Small animal PET/CT static scans acquired at different time points (up to 24 h) and ex vivo organ distribution studies were then carried out in healthy nude mice (n = 3) to investigate the stability and biodistribution in vivo of this new 89Zr-based complex. High stability in vivo, with low accumulation of free 89Zr in bones and kidneys, was measured. Furthermore, an activated ester functionalized version of AAZTHAG was synthesized to allow the conjugation with biomolecules such as antibodies. The bifunctional chelator was then conjugated to the human anti-HER2 monoclonal antibody Trastuzumab (Tz) as a proof of principle test of conjugation to biologically active molecules. The final 89Zr labeled compound was characterized via radio-HPLC and SDS-PAGE followed by autoradiography, and its stability in different solutions was assessed for at least 4 days. Full article
Show Figures

Figure 1

14 pages, 7529 KB  
Article
In Vitro Cytotoxicity of Trastuzumab (Tz) and Se-Trastuzumab (Se-Tz) against the Her/2 Breast Cancer Cell Lines JIMT-1 and BT-474
by Priyanka Bapat, Debalina Goswami Sewell, Mallory Boylan, Arun K. Sharma and Julian E. Spallholz
Int. J. Mol. Sci. 2021, 22(9), 4655; https://doi.org/10.3390/ijms22094655 - 28 Apr 2021
Cited by 7 | Viewed by 4688
Abstract
Her/2+ breast cancer accounts for ~25% mortality in women and overexpression of Her/2 leads to cell growth and tumor progression. Trastuzumab (Tz) with Taxane is the preferred treatment for Her/2+ patients. However, Tz responsive patients often develop resistance to Tz treatment. Herein, redox [...] Read more.
Her/2+ breast cancer accounts for ~25% mortality in women and overexpression of Her/2 leads to cell growth and tumor progression. Trastuzumab (Tz) with Taxane is the preferred treatment for Her/2+ patients. However, Tz responsive patients often develop resistance to Tz treatment. Herein, redox selenides (RSe-) were covalently linked to Tz using a selenium (Se)-modified Bolton–Hunter Reagent forming Seleno-Trastuzumab (Se-Tz; ~25 µgSe/mg). Se-Tz was compared to Tz and sodium selenite to assess the viability of JIMT-1 and BT-474 cells. Comparative cell viability was examined by microscopy and assessed by fluorometric/enzymatic assays. Se-Tz and selenite redox cycle producing superoxide (O2•−) are more cytotoxic to Tz resistant JIMT-1 and Tz sensitive BT-474 cells than Tz. The results of conjugating redox selenides to Tz suggest a wider application of this technology to other antibodies and targeting molecules. Full article
Show Figures

Figure 1

12 pages, 4619 KB  
Article
Trastuzumab Modulates the Protein Cargo of Extracellular Vesicles Released by ERBB2+ Breast Cancer Cells
by Silvia Marconi, Sara Santamaria, Martina Bartolucci, Sara Stigliani, Cinzia Aiello, Maria Cristina Gagliani, Grazia Bellese, Andrea Petretto, Katia Cortese and Patrizio Castagnola
Membranes 2021, 11(3), 199; https://doi.org/10.3390/membranes11030199 - 12 Mar 2021
Cited by 9 | Viewed by 3742
Abstract
Cancers overexpressing the ERBB2 oncogene are aggressive and associated with a poor prognosis. Trastuzumab is an ERBB2 specific recombinant antibody employed for the treatment of these diseases since it blocks ERBB2 signaling causing growth arrest and survival inhibition. While the effects of Trastuzumab [...] Read more.
Cancers overexpressing the ERBB2 oncogene are aggressive and associated with a poor prognosis. Trastuzumab is an ERBB2 specific recombinant antibody employed for the treatment of these diseases since it blocks ERBB2 signaling causing growth arrest and survival inhibition. While the effects of Trastuzumab on ERBB2 cancer cells are well known, those on the extracellular vesicles (EVs) released from these cells are scarce. This study focused on ERBB2+ breast cancer cells and aimed to establish what type of EVs they release and whether Trastuzumab affects their morphology and molecular composition. To these aims, we performed immunoelectron microscopy, immunoblot, and high-resolution mass spectrometry analyses on EVs purified by differential centrifugation of culture supernatant. Here, we show that EVs released from ERBB2+ breast cancer cells are polymorphic in size and appearance and that ERBB2 is preferentially associated with large (120 nm) EVs. Moreover, we report that Trastuzumab (Tz) induces the expression of a specific glycosylated 50 kDa isoform of the CD63 tetraspanin and modulates the expression of 51 EVs proteins, including TOP1. Because these proteins are functionally associated with organelle organization, cytokinesis, and response to lipids, we suggest that Tz may influence these cellular processes in target cells at distant sites via modified EVs. Full article
(This article belongs to the Collection Feature Papers in Membranes in Life Sciences)
Show Figures

Figure 1

Back to TopTop