Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Unitex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1084 KB  
Article
Transducer Cascades for Biological Literature-Based Discovery
by Denis Maurel, Sandy Chéry, Nicole Bidoit, Philippe Chatalic, Aziza Filali, Christine Froidevaux and Anne Poupon
Information 2022, 13(5), 262; https://doi.org/10.3390/info13050262 - 20 May 2022
Viewed by 2712
Abstract
G protein-coupled receptors (GPCRs) control the response of cells to many signals, and as such, are involved in most cellular processes. As membrane receptors, they are accessible at the surface of the cell. GPCRs are also the largest family of membrane receptors, with [...] Read more.
G protein-coupled receptors (GPCRs) control the response of cells to many signals, and as such, are involved in most cellular processes. As membrane receptors, they are accessible at the surface of the cell. GPCRs are also the largest family of membrane receptors, with more than 800 representatives in mammal genomes. For this reason, they are ideal targets for drugs. Although about one third of approved drugs target GPCRs, only about 16% of GPCRs are targeted by drugs. One of the difficulties comes from the lack of knowledge on the intra-cellular events triggered by these molecules. In the last two decades, scientists have started mapping the signaling networks triggered by GPCRs. However, it soon appeared that the system is very complex, which led to the publication of more than 320,000 scientific papers. Clearly, a human cannot take into account such massive sources of information. These papers represent a mine of information about both ontological knowledge and experimental results related to GPCRs, which have to be exploited in order to build signaling networks. The ABLISS project aims at the automatic building of GPCRs networks using automated deductive reasoning, allowing to integrate all available data. Therefore, we processed the automatic extraction of network information from the literature using Natural Language Processing (NLP). We mainly focused on the experimental results about GPCRs reported in the scientific papers, as so far there is no source gathering all these experimental results. We designed a relational database in order to make them available to the scientific community later. After introducing the more general objectives of the ABLISS project, we describe the formalism in detail. We then explain the NLP program using the finite state methods (Unitex graph cascades) we implemented and discuss the extracted facts obtained. Finally, we present the design of the relational database that stores the facts extracted from the selected papers. Full article
(This article belongs to the Special Issue Novel Methods and Applications in Natural Language Processing)
Show Figures

Figure 1

17 pages, 514 KB  
Article
Istex: A Database of Twenty Million Scientific Papers with a Mining Tool Which Uses Named Entities
by Denis Maurel, Enza Morale, Nicolas Thouvenin, Patrice Ringot and Angel Turri
Information 2019, 10(5), 178; https://doi.org/10.3390/info10050178 - 22 May 2019
Cited by 3 | Viewed by 5914
Abstract
Istex is a database of twenty million full text scientific papers bought by the French Government for the use of academic libraries. Papers are usually searched for by the title, authors, keywords or possibly the abstract. To authorize new types of queries of [...] Read more.
Istex is a database of twenty million full text scientific papers bought by the French Government for the use of academic libraries. Papers are usually searched for by the title, authors, keywords or possibly the abstract. To authorize new types of queries of Istex, we implemented a system of named entity recognition on all papers and we offer users the possibility to run searches on these entities. After the presentation of the French Istex project, we detail in this paper the named entity recognition with CasEN, a cascade of graphs, implemented on the Unitex Software. CasEN exists in French, but not in English. The first challenge was to build a new cascade in a short time. The results of its evaluation showed a good Precision measure, even if the Recall was not very good. The Precision was very important for this project to ensure it did not return unwanted papers by a query. The second challenge was the implementation of Unitex to parse around twenty millions of documents. We used a dockerized application. Finally, we explain also how to query the resulting Named entities in the Istex website. Full article
(This article belongs to the Special Issue Natural Language Processing and Text Mining)
Show Figures

Figure 1

Back to TopTop