Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = air-bending

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4797 KB  
Essay
Research on the Explosion Characteristics of Hydrogen-Propane Based on the Angle of the “Z”-Shaped Pipe Elbow
by Xiao Wu, Jianfeng Gao, Bin Hao, Xiaojun Shao, Yulin Yang, Meng Li, Yanan Han and Yang Wu
Fire 2025, 8(12), 468; https://doi.org/10.3390/fire8120468 (registering DOI) - 1 Dec 2025
Abstract
This research employs an integrated experimental and numerical simulation approach to investigate how varying angles of continuous elbows in a “Z”-shaped pipeline affect the deflagration behavior of hydrogen-propane-air mixtures. Findings indicate that centrifugal forces acting on the flame front as it traverses an [...] Read more.
This research employs an integrated experimental and numerical simulation approach to investigate how varying angles of continuous elbows in a “Z”-shaped pipeline affect the deflagration behavior of hydrogen-propane-air mixtures. Findings indicate that centrifugal forces acting on the flame front as it traverses an elbow cause a distinctive “tongue-shaped” propagation along the inner wall. A cavity that generates unburned gas near the outer wall. The volume of this cavity increases significantly with the Angle of the elbow. The flame propagation is regulated by it and presents three distinct stages: the initial development section within the straight pipe section, the disturbance section when entering the first elbow, and the subsequent suppression section under the action of the cavity. The more intense turbulent combustion occurs at the 90° bend, with the highest peak flame velocity. On the contrary, the 120° and 150° elbows suppress the spread of flames. In addition, the angle of the elbow has a significant effect on the second overpressure peak, which exhibits strong non-linear growth. The value at 150° is 2.7 times greater than that at 30°. This is mainly caused by the energy focusing effect of the reflected pressure wave in the cavity magnified by the large-angle elbow. These findings provide mechanism-level understanding for the safe design of complex hydrogen pipeline systems. Full article
(This article belongs to the Special Issue Fire and Explosion Hazards in Energy Systems)
Show Figures

Figure 1

17 pages, 5239 KB  
Article
Low-Loss Multimode Waveguide Bends with Direct Laser Writing in Polymer
by Tigran Baghdasaryan, Neshteh Kourian, Mushegh Rafayelyan and Tatevik Sarukhanyan
Micromachines 2025, 16(12), 1361; https://doi.org/10.3390/mi16121361 - 29 Nov 2025
Viewed by 119
Abstract
Waveguide bends are critical components for compact routing in integrated photonic circuits, yet their design in air-clad polymer waveguides fabricated by two-photon polymerization direct laser writing (2PP-DLW) is challenging due to multimode behavior. We address this by systematically modeling Bézier-shaped 90° bends and [...] Read more.
Waveguide bends are critical components for compact routing in integrated photonic circuits, yet their design in air-clad polymer waveguides fabricated by two-photon polymerization direct laser writing (2PP-DLW) is challenging due to multimode behavior. We address this by systematically modeling Bézier-shaped 90° bends and S-bends using a variational FDTD solver, exploring bend span, curvature, and waveguide dimensions. Our results show that smaller waveguides (widths 2–4 µm) and lower Bézier parameters (B = 0–0.2) consistently yield superior performance, enabling sharper bends with minimal loss. For 90° bends, spans as small as 20–30 µm achieve near-unity transmission, while for S-bends, aspect ratios below 1 are feasible, allowing highly compact layouts. Although all configurations transmit energy to the fundamental mode, wider waveguides exhibit stronger higher-order mode excitation and greater sensitivity to fabrication imperfections. Smaller waveguides reduce these effects but approach the resolution limits of 2PP-DLW. Thus, a 2 µm wide waveguide represents an optimal compromise between fabrication feasibility and optical performance. Experimental demonstrations confirm the practicality of these design rules, illustrating trends predicted by simulations. These findings establish clear guidelines for designing low-loss, space-efficient 3D photonic circuits and highlight the critical role of simulation-driven optimization in fully exploiting 2PP-DLW technology, while providing deeper insight for future device architectures. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

21 pages, 7193 KB  
Article
Influence of YSZ Thermal Barrier Coating on Aerothermal Performance of an Annular Combustor
by Zhixin Zhang, Jiahuan Cui, Qi Zeng, Liang Wang, Rongtao Wang and Feng Liu
Aerospace 2025, 12(12), 1035; https://doi.org/10.3390/aerospace12121035 - 21 Nov 2025
Viewed by 254
Abstract
Based on a realistic three-dimensional geometric model, this study numerically investigates the influence of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on the aerothermal performance of an annular combustor by employing a conjugate heat transfer (CHT) and non-premixed reactive flow coupling approach. Considering [...] Read more.
Based on a realistic three-dimensional geometric model, this study numerically investigates the influence of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on the aerothermal performance of an annular combustor by employing a conjugate heat transfer (CHT) and non-premixed reactive flow coupling approach. Considering the inner and outer liners, double-wall exhaust bends, and the full configuration of cooling holes, two cases—with and without the TBCs—were analyzed. The results reveal that the application of TBCs markedly modifies the near-wall flow structures and heat transfer characteristics. The cooling air mass flow rate decreases from 0.1211 kg/s to 0.1023 kg/s, corresponding to a 15.5% reduction in cooling load. The main recirculation zone becomes more compact, with enhanced vortex intensity, smoother velocity distribution, and improved flame stability. The high-temperature core region extends further downstream, and the peak temperature increases by approximately 80–100 K, indicating more complete combustion and greater heat retention. The outlet temperature distribution factor (OTDF) decreases from 57.34% to 44.48%, leading to a 22.4% improvement in temperature uniformity. The average wall temperatures of the inner liner, outer liner, and exhaust bend decrease by 3.7%, 8.8%, and 7.5%, respectively, with local peak reductions exceeding 250 K. The study demonstrates that the YSZ TBCs enhances the combustor’s thermal protection capability, flow stability, and temperature uniformity through a coupled mechanism of “thermal insulation–flow reconstruction–energy redistribution.” It should be noted that this study considers only the effect of the ceramic top coat of the TBCs, excluding the metallic bond coat and the thermally grown oxide (TGO) layer. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 4884 KB  
Article
Research on Selected Properties of Concrete Composite with the Addition of Post-Production Metallic Dust
by Bogdan Langier and Izabela Major
Materials 2025, 18(22), 5197; https://doi.org/10.3390/ma18225197 - 15 Nov 2025
Viewed by 368
Abstract
A major issue in industrial production is the generation of post-production wastes that are not biodegradable. The article presents an innovative solution for the management of industrial waste, which includes, among others, metal dust generated during the grinding of castings. The results of [...] Read more.
A major issue in industrial production is the generation of post-production wastes that are not biodegradable. The article presents an innovative solution for the management of industrial waste, which includes, among others, metal dust generated during the grinding of castings. The results of research on a concrete composite modified with metallic dust, a by-product from cast iron product manufacturing, were presented. The study analyzed the effect of using metallic dust as a partial replacement for fine aggregate at levels of 10%, 20%, 30%, 40%, and 50% on selected concrete properties. Tests included concrete mix consistency, compressive strength after 28 days and 6 months, density after 28 days of curing, bending strength, abrasion resistance using the Boehme disk method, durability in a salt chamber, and air content in hardened concrete. The research results indicate the possibility of using waste metal dust in concrete composites as a substitute for sand as a fine aggregate. An innovative waste processing solution allows the creation of a product with better abrasion resistance and compressive strength parameters while also having a good impact on the environment. Full article
Show Figures

Figure 1

14 pages, 2264 KB  
Article
High-Sensitivity Air-Coupled Ultrasonic Transducer Design Based on PMN-PT Bending Vibration Modes
by Junwen Deng, Xingyu Chen, Yuliang Zhu, Xiaobo Wang, Tao Han and Chengtao Luo
Sensors 2025, 25(22), 6912; https://doi.org/10.3390/s25226912 - 12 Nov 2025
Viewed by 455
Abstract
Gas pipelines are a critical means of transportation in industrial production. To detect gas pipeline leaks, ultrasonic transducers with specific center frequencies and high sensitivity are required. This paper proposes a novel air-coupled ultrasonic transducer design based on a horn-type matching layer and [...] Read more.
Gas pipelines are a critical means of transportation in industrial production. To detect gas pipeline leaks, ultrasonic transducers with specific center frequencies and high sensitivity are required. This paper proposes a novel air-coupled ultrasonic transducer design based on a horn-type matching layer and a bending-mode type of piezoelectric material, specifically tailored for gas leak detection scenarios. The transducer design is optimized by the finite element method, focusing on the basic components of the piezoelectric bimorph, the horn and the supporting tube. First, the influence of various dimensional parameters of the piezoelectric bimorph on the bending vibration mode was analyzed. Then, the effects of the other two components, the horn and the supporting tube, on the piezoelectric bimorph vibration mode were investigated. A parametric scan on the dimensions of these components was conducted to optimize the transducer’s output. Finally, ultrasonic transducers using PMN-PT and PZT were fabricated and tested. The results show that the sensitivity of those transducers surpasses that of similar commercial transducers, especially the PMN-PT one with a center frequency of 40 kHz and a peak receiving sensitivity of −51.1 dB. This transducer, benefiting from the high-performance piezoelectric material and the bending vibration mode, proves to be a promising candidate for high-precision leak detection in gas pipelines. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

21 pages, 7853 KB  
Article
The Effect of Surface Corrosion Damage and Fe Content on the Fatigue Life of an AlSi7Mg0.6 Cast Alloy Used in the Electric Automotive Industry
by Lenka Kuchariková, Eva Tillová, Zuzana Šurdová, Mária Chalupová, Viera Zatkalíková, Edita Illichmanová and Ivana Švecová
Metals 2025, 15(11), 1222; https://doi.org/10.3390/met15111222 - 5 Nov 2025
Viewed by 441
Abstract
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and [...] Read more.
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and microstructural variability can significantly impact fatigue performance. This study investigates the combined effects of surface corrosion damage and higher Fe content on the fatigue life of the AlSi7Mg0.6 alloy, using a rotating bending fatigue test under simultaneous corrosion exposure in a 3.5 wt. % NaCl solution. The effect of corrosion and Fe content on fatigue life was then investigated and analyzed using Wöhler curves and scanning electron microscopy (SEM). The results demonstrate that the corrosion-fatigue interaction accelerated the kinetics of the fatigue process, while the fracture mechanism and crack initiation places are not fundamentally altered compared to alloys in the state without corrosion damage. A comparison of the fatigue lifetime of samples in an air environment and a corrosive environment shows that the corrosive environment (3.5% NaCl) reduces the fatigue lifetime of alloys without T6 by an average of 7.5 MPa and alloys after T6 by 6 MPa. The results are probably due to the penetration of chloride ions into casting defects located on the surface of the samples. Surface pits formed during corrosion act as stress concentrators, increasing the likelihood of stress-induced failure. Microstructural feature morphology, especially Fe-rich intermetallic phases, influences crack propagation mechanisms. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Light Alloys)
Show Figures

Graphical abstract

12 pages, 2252 KB  
Article
Ultra-High Spectral Contrast Nanobeam Photonic Crystal Cavity on Bending Waveguide
by Ping Yu, Peihong Cheng, Zhuoyuan Wang, Jingrui Wang, Fangfang Ge, Huiye Qiu and Daniel Kacik
Photonics 2025, 12(10), 1031; https://doi.org/10.3390/photonics12101031 - 17 Oct 2025
Viewed by 531
Abstract
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show [...] Read more.
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show finger-ring-like mode profiles with the achievement of high-quality factors (Q∼106), even when the bending radius is less than 50 times the lattice constant. Straight waveguides side-coupled to the cavity are used to access and measure mode resonances. The measured spectra show a high extinction ratio over 40 dB for dielectric modes and 20 dB for air modes, respectively. Both dielectric and air resonant modes are revealed with Q-factors over 3.3 × 104 and 7.9 × 104, respectively, for the coupled PCCoBWs. The proposed PCCoBW could be implemented as high-contrast notch filtering and would benefit a broad range of applications such as optical filters, modulators, sensors, or switches. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

29 pages, 2790 KB  
Article
A New Hybrid Adaptive Self-Loading Filter and GRU-Net for Active Noise Control in a Right-Angle Bending Pipe of an Air Conditioner
by Wenzhao Zhu, Zezheng Gu, Xiaoling Chen, Ping Xie, Lei Luo and Zonglong Bai
Sensors 2025, 25(20), 6293; https://doi.org/10.3390/s25206293 - 10 Oct 2025
Viewed by 527
Abstract
The air-conditioner noise in a rehabilitation room can seriously affect the mental state of patients. However, the existing single-layer active noise control (ANC) filters may fail to attenuate the complicated harmonic noise, and the deep recursive ANC method may fail to work in [...] Read more.
The air-conditioner noise in a rehabilitation room can seriously affect the mental state of patients. However, the existing single-layer active noise control (ANC) filters may fail to attenuate the complicated harmonic noise, and the deep recursive ANC method may fail to work in real time. To solve the problem, in a bending-pipe model, a new hybrid adaptive self-loading filtered-x least-mean-square (ASL-FxLMS) and convolutional neural network-gate recurrent unit (CNN-GRU) network is proposed. At first, based on the recursive GRU translation core, an improved CNN-GRU network with multi-head attention layers is proposed. Especially for complicated harmonic noises with more or fewer frequencies than harmonic models, the attenuation performance will be improved. In addition, its structure is optimized to decrease the computing load. In addition, an improved time-delay estimator is applied to improve the real-time ANC performance of CNN-GRU. Meanwhile, an adaptive self-loading FxLMS algorithm has been developed to deal with the uncertain components of complicated harmonic noise. Moreover, to achieve balance attenuation, robustness, and tracking performance, the ASL-FxLMS and CNN-GRU are connected by a convex combination structure. Furthermore, theoretical analysis and simulations are also conducted to show the effectiveness of the proposed method. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 7726 KB  
Article
Digital Shearography for NDE of Crack Classification in Composite Materials
by Zhongfang Gao, Siyuan Fang, Riad Dandan and Lianxiang Yang
Appl. Sci. 2025, 15(19), 10317; https://doi.org/10.3390/app151910317 - 23 Sep 2025
Viewed by 640
Abstract
This paper presents a relevant and timely study on the application of thermal loaded digital shearography for crack classification in glass fiber reinforced plastic (GFRP) structures, particularly air-cooled condenser (ACC) fan blades. A thermal loaded digital shearography system was applied to measure strain [...] Read more.
This paper presents a relevant and timely study on the application of thermal loaded digital shearography for crack classification in glass fiber reinforced plastic (GFRP) structures, particularly air-cooled condenser (ACC) fan blades. A thermal loaded digital shearography system was applied to measure strain concentration caused by the cracks at different fatigue cycles. A thermomechanical model was introduced to estimate the heating temperature and the time to ensure heat can reach to the desired depth and that both shallow and deep cracks can be detected. In order to correlate the information of strain concentration in the shearograms to the different stages of cracks, fatigue testing with dynamic three-point bending was conducted. The fatigue tests demonstrated how the strain concentration evolved in the shearograms, while the crack developed from the early (no noticeable strain concentration), to the middle (strain concentration is forming), to the late stage (significant strain concentration is found). The relationships between the degrees of strain concentration in the shearograms and the different stages of cracks can be obtained from testing of the artificial cracks. Using the rules and experimental results obtained from artificial samples, digital shearography was applied to classify the crack stages in parts of ACC fan blades from industry. The combination of artificial crack testing, fatigue loading experiments, and validation with CT scans demonstrates a comprehensive approach and provides potential guidance for industry to determine criticality and maintenance criteria. Full article
Show Figures

Figure 1

21 pages, 2556 KB  
Article
Scour Control in a 90° Bend by Means of an Air Bubble Screen
by Pari Maleki, Javad Ahadiyan, Rui Aleixo, Hossein Azizi Nadian, Zeinab Tamoradi, Seyed Mahmood Kashefipour, Anton J. Schleiss and Manouchehr Fathi Moghadam
Water 2025, 17(18), 2693; https://doi.org/10.3390/w17182693 - 12 Sep 2025
Viewed by 683
Abstract
Scouring is an erosional process driven by the water motion over a sediment bed. Scour can lead to structural safety risks of built structures and to riverbanks’ instabilities and collapse. In particular, scouring in river bends is a known phenomenon caused by secondary [...] Read more.
Scouring is an erosional process driven by the water motion over a sediment bed. Scour can lead to structural safety risks of built structures and to riverbanks’ instabilities and collapse. In particular, scouring in river bends is a known phenomenon caused by secondary flow currents. This scouring can result in negative impacts on the economic and social activities that occur on the riverbanks. On the other hand, the erosion and scouring processes of riverbeds are often addressed by means of heavy civil engineering construction works. Aiming at looking for different solutions for the scour in river bends, this research investigates the use of an air bubble screen system to minimize the scouring in river bends by providing detailed measurements of sedimentation patterns and velocity fields in a mild 90-degree bend where an air screen bubble was installed. The air bubble screen is generated by injecting compressed air through a perforated pipe placed on the bed along the outer bend. Different parameters were tested, including the water flow rate in the channel, the air flow rate, the angle of attack between the air bubble screen and the secondary flow, and flow direction. The air bubble screen opposes the direction of the bend’s induced secondary flows, altering the velocity pattern such that the maximum velocity at cross-sections of 45°, 65°, 80°, and 90° were displaced from the outer wall as much as 53%, 68%, 89%, and 84% of the width, respectively. The air bubble screen system also reduced the secondary flow power in the maximum scour zone by 35%. Hence, the maximum scour depth was reduced by 59% to 79.8% for the maximum flow rate by increasing the air bubbles’ angle of attack relative to the primary flow from 0° to 90°. Finally, the limitations of this study and its applicability to real cases is discussed. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

14 pages, 2482 KB  
Article
Multiscale Structural Engineering of Cellulose Foams: Performance Characterization and Fiber Imaging
by Patricija Pevec, Urška Kavčič, Aleš Hladnik and Diana Gregor-Svetec
Polymers 2025, 17(17), 2355; https://doi.org/10.3390/polym17172355 - 29 Aug 2025
Viewed by 906
Abstract
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection [...] Read more.
The paper industry is always looking for possible solutions for new fiber-based products, such as protective and cushioning materials. These materials must be carefully designed to provide effective cushioning while also being lightweight to reduce transportation costs. Additionally, they need to offer protection from environmental and mechanical damage, besides having good processability to ensure proper buffering. The widely used protective and cushioning materials, such as plastic foams and expanded or extruded polystyrene, create significant disposal challenges. Therefore, there is increasing demand for biodegradable and sustainable materials for cushioning applications. The focus of our research was to develop fiber-based foams and investigate the influence of different compositions (hardwood and softwood) of cellulose fibers on the basic (mass, thickness, density) and mechanical properties (three-point bend test, tensile properties). Foams made entirely from short eucalyptus fibers (100S) exhibited the highest density (28.0 ± 0.34 kg/m3) and lowest thickness (38.82 ± 4.21 mm), resulting in superior tensile strength and elastic modulus but lower strain at break. In contrast, foams composed of long spruce fibers (100L) had the lowest density (19.0 ± 0.27 kg/m3) and highest thickness (58.52 ± 1.50 mm), with lower strength and stiffness but much higher ductility and porosity (confirmed by ~30% higher air permeability compared to 100S). Blended formulations demonstrated intermediate behavior, with the 50S50L foam showing a favorable balance of strength, stiffness, and flexibility. Visual analysis confirmed heterogeneous fiber distribution with localized agglomerates and compaction at the bottom layer due to casting. To further interpret the complex relationships within the dataset and uncover patterns, Principal Component Analysis (PCA) was applied to all experimental results. The findings of the research contribute to the broader understanding of how different fiber types and blends impact the performance of sustainable cellulose-based foams, with potential implications for the development of biodegradable packaging and lightweight construction materials. Full article
Show Figures

Figure 1

23 pages, 6505 KB  
Article
Study of the Equivalent Stiffness of a Non-Contact Piezoelectric Actuator’s Micro-Displacement Amplification Mechanism
by Huaiyong Li, Dongya Zhang, Yusheng Lin, Yue Yang, Zhiwei Shi and Chong Li
Micromachines 2025, 16(9), 974; https://doi.org/10.3390/mi16090974 - 25 Aug 2025
Viewed by 1245
Abstract
To address the issues of mechanical wear and limited service life in conventional contact piezoelectric actuators, this study proposes a non-contact piezoelectric actuator employing compressed air for energy transmission; we elucidate its structure and operating principle. The working performance of the actuator is [...] Read more.
To address the issues of mechanical wear and limited service life in conventional contact piezoelectric actuators, this study proposes a non-contact piezoelectric actuator employing compressed air for energy transmission; we elucidate its structure and operating principle. The working performance of the actuator is significantly affected by the amplification performance of its micro-displacement amplification mechanism, which itself is closely dependent on the mechanism’s stiffness. Mathematical models for both the filleted straight-beam flexure hinge and the micro-displacement amplification mechanism are established. Analytical equations for calculating the equivalent stiffness of the hinge and the mechanism are derived. The variations in the hinge’s bending stiffness and tensile stiffness, as well as the mechanism’s equivalent stiffness with key structural parameters, are investigated. The stress distribution of the micro-displacement amplification mechanism is analyzed to evaluate the rationality and reliability of its structural design. A prototype is fabricated and equivalent stiffness tests are conducted. The theoretical calculation is basically consistent with the experimental results, verifying the accuracy of the stiffness model. The results show that flexure hinge tensile stiffness significantly exceeds the bending stiffness, permitting the simplification of the hinge stiffness model. Hinge minimum thickness and beam length critically affect mechanism stiffness; reducing thickness or increasing beam length lowers stiffness, boosting displacement amplification. Full article
Show Figures

Figure 1

18 pages, 8240 KB  
Article
Low Loss and High Polarization-Maintaining Single-Mode Hollow-Core Anti-Resonant Fibers with S+C+L+U Communication Bands
by Hongxiang Xu, Yuan Yang, Jinhui Yuan, Dongxin Wu, Yilin Huang, Shengbao Luo, Zhiyong Ren, Changming Xia, Jiantao Liu, Guiyao Zhou and Zhiyun Hou
Photonics 2025, 12(9), 846; https://doi.org/10.3390/photonics12090846 - 24 Aug 2025
Viewed by 1495
Abstract
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both [...] Read more.
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both the x and y directions generate the distinct surface modes. By simultaneously employing an elliptical core and asymmetric core-wall thickness, we enhance the phase birefringence. Theoretical analysis results show that the proposed PM-HC-ARF achieves a transmission loss of 0.00082 dB/m at wavelength 1450 nm, along with a birefringence of 1.38 × 10−4; it demonstrates CL levels an order of magnitude below state-of-the-art polarization-maintaining HC-ARFs. Moreover, within the S+C+L+U communication bands, it achieves a bandwidth exceeding 380 nm (1420–1800 nm) while maintaining a birefringence of greater than 1.45 × 10−4. In particular, this PM-HC-ARF demonstrates a maximum higher-order mode extinction ratio of over 32,070; the single-mode transmission characteristics are excellent, along with exceptional bending resistance characteristics. When the bending radius exceeds 3 cm, the impacts on the loss and birefringence are negligible; this also demonstrates that the fiber structure shows good robustness when subjected to harsh environment interference. The proposed PM-HC-ARF is believed to have important applications in fiber optic gyroscopes, optical amplifiers, and hydrophones. Full article
Show Figures

Figure 1

18 pages, 6259 KB  
Article
Wind-Induced Bending Characteristics of Crop Leaves and Their Potential Applications in Air-Assisted Spray Optimization
by Zhouming Gao, Jing Ma, Wei Hu, Kaiyuan Wang, Kuan Liu, Jian Chen, Tao Wang, Xiaoya Dong and Baijing Qiu
Horticulturae 2025, 11(9), 1002; https://doi.org/10.3390/horticulturae11091002 - 23 Aug 2025
Viewed by 730
Abstract
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined [...] Read more.
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined with high-speed photography and digital image analysis were conducted to systematically investigate the curvature and flexibility distributions of three typical crop leaves: walnut, peach, and pepper, across a range of wind speeds. The results indicate that with increasing wind speed, all three types of leaves gradually transition from smooth, uniform bending to a multi-peak pattern of pronounced local curvature, with increasingly prominent nonlinear deformation characteristics. Moreover, once the wind speed exceeds the critical threshold of 6 m/s, the primary deformation region generally shifts from the leaf base to the tip. For example, the maximum curvature of walnut leaves increased from 0.018 mm−1 to 0.047 mm−1, and that of pepper leaves from 0.031 mm−1 to 0.101 mm−1, both more than double their original values. In addition, all three types of leaves demonstrated a distinct structural gradient characterized by strong basal rigidity and high apical flexibility. The tip flexibility values exceeded 1.5 × 10−5, 4 × 10−4, and 5.6 × 10−4 mm−2·mN−1 for walnut, peach, and pepper leaves, respectively. These findings elucidate the mechanical response mechanisms of non-uniform flexible crop leaves under wind-induced bending and provide a theoretical basis and data support for the optimization of air-assisted spraying parameters. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

20 pages, 8458 KB  
Article
Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode
by Fatima-Ezzahrae Jabri, Imi Ochana, François Ducobu, Rachid El Alaiji and Anthonin Demarbaix
Appl. Sci. 2025, 15(15), 8266; https://doi.org/10.3390/app15158266 - 25 Jul 2025
Viewed by 810
Abstract
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were [...] Read more.
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects. Full article
Show Figures

Figure 1

Back to TopTop