Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = anterior pelvic ganglion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 56086 KB  
Article
Anatomical Location of the Vesical Branches of the Inferior Hypogastric Plexus in Human Cadavers
by Emily P. Day, Benjamin R. Johnston, Stanley F. Bazarek, Justin M. Brown, Nucelio Lemos, Eve I. Gibson, Helaina N. Hurban, Susan B. Fecho, Lewis Holt-Bright, Daniel D. Eun, Michel A. Pontari, Elise J. De, Francis J. McGovern, Michael R. Ruggieri and Mary F. Barbe
Diagnostics 2024, 14(8), 794; https://doi.org/10.3390/diagnostics14080794 - 10 Apr 2024
Cited by 4 | Viewed by 3455
Abstract
We have demonstrated in canines that somatic nerve transfer to vesical branches of the inferior hypogastric plexus (IHP) can be used for bladder reinnervation after spinal root injury. Yet, the complex anatomy of the IHP hinders the clinical application of this repair strategy. [...] Read more.
We have demonstrated in canines that somatic nerve transfer to vesical branches of the inferior hypogastric plexus (IHP) can be used for bladder reinnervation after spinal root injury. Yet, the complex anatomy of the IHP hinders the clinical application of this repair strategy. Here, using human cadavers, we clarify the spatial relationships of the vesical branches of the IHP and nearby pelvic ganglia, with the ureteral orifice of the bladder. Forty-four pelvic regions were examined in 30 human cadavers. Gross post-mortem and intra-operative approaches (open anterior abdominal, manual laparoscopic, and robot-assisted) were used. Nerve branch distances and diameters were measured after thorough visual inspection and gentle dissection, so as to not distort tissue. The IHP had between 1 to 4 vesical branches (2.33 ± 0.72, mean ± SD) with average diameters of 0.51 ± 0.06 mm. Vesical branches from the IHP arose from a grossly visible pelvic ganglion in 93% of cases (confirmed histologically). The pelvic ganglion was typically located 7.11 ± 6.11 mm posterolateral to the ureteral orifice in 69% of specimens. With this in-depth characterization, vesical branches from the IHP can be safely located both posterolateral to the ureteral orifice and emanating from a more proximal ganglionic enlargement during surgical procedures. Full article
(This article belongs to the Special Issue Advances in Anatomy—Third Edition)
Show Figures

Figure 1

22 pages, 10532 KB  
Article
Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
by Żaneta Listowska and Zenon Pidsudko
Int. J. Mol. Sci. 2021, 22(5), 2231; https://doi.org/10.3390/ijms22052231 - 24 Feb 2021
Cited by 4 | Viewed by 2486
Abstract
The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and [...] Read more.
The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and quantitative real-time PCR (qPCR). The animals were divided into a control (C), a morphological (MG) or a molecular biology group (MBG). APG neurons supplying UBT were revealed using the retrograde tracing technique with Fast Blue (FB). Unilateral axotomy resulted in an over 50% decrease in the number of FB+ neurons in both APG ganglia. Immunohistochemistry revealed significant changes in the chemical coding of FB+ cells only in the right ganglion: decreased expression of dopamine-B-hydroxylase (DBH)/tyrosine hydroxylase (TH) and up-regulation of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT), galanin (GAL), vasoactive intestinal polypeptide (VIP) and brain nitric oxide synthase (bNOS). The qPCR results partly corresponded with immunofluorescence findings. In the APGs, genes for VAChT and ChAT, TH and DBH, VIP, and NOS were distinctly down-regulated, while the expression of GAL was up-regulated. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop