Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,861)

Search Parameters:
Keywords = biological diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1878 KB  
Article
Cell Suspension of the Tree Fern Cyathea smithii (J.D. Hooker) and Its Metabolic Potential During Cell Growth: Preliminary Studies
by Jan J. Rybczyński, Łukasz Marczak, Katarzyna Skórkowska-Telichowska, Maciej Stobiecki, Jan Szopa and Anna Mikuła
Int. J. Mol. Sci. 2025, 26(23), 11683; https://doi.org/10.3390/ijms262311683 - 2 Dec 2025
Abstract
The purpose of this study was to present a chemical analysis of the metabolome of cell aggregates of the tree fern Cyathea smithii (J.D. Hooker) cell suspension culture. The LC/MS and GC/MS techniques were used for identification of metabolites. The kinetics of fresh [...] Read more.
The purpose of this study was to present a chemical analysis of the metabolome of cell aggregates of the tree fern Cyathea smithii (J.D. Hooker) cell suspension culture. The LC/MS and GC/MS techniques were used for identification of metabolites. The kinetics of fresh weight, dry weight, and ash content showed 3.5-fold increases during 15-day-long culture. The analysis demonstrated high metabolic activity of cultured cells. In total, 160 metabolites from primary and secondary metabolism and almost 2000 compounds of unknown identity were identified. Three flavonoids—the chalcone isookanin [(2S)-2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2,3-dihydrochromen-4-one], a methoxy derivative of the flavone gardenin B (5-Hydroxy-2-(4-methoxyphenyl)-6,7,8-trimethoxy-4H-1-benzopyran-4-one), and the isoflavone tectoridin (4′,5-Dihydro-6-methoxy-7-(O-glucoside)isoflavone)—had not been previously detected in the cell culture of C. smithii. Principal component analysis revealed five distinct groups of samples; groups 4 and 5 showed the greatest similarity and corresponded to cultures on days 12 and 15, respectively. The number of differentiating compounds was 75, indicated by a heatmap showing positive and negative correlations between the days of culture. The studies described in this paper are crucial for further identification of metabolites and establishing the relationship between the metabolic composition of tree fern cells in culture and their biological activity, assessed by physiological parameters. By determining the relationship between the chemical composition of cells and their growth from culture initiation to senescence, we will provide a more complete picture of the potential for environmental factors to regulate this relationship. Based on previous studies, environmental stimuli such as electromagnetic fields or light of different wavelengths can result in altered growth physiology and cell mass, as well as metabolite diversification and accumulation. The research results presented in this paper provide a foundation for further studies aimed at predicting and regulating the productivity of C. smithii cells in suspension culture and elucidating the significance of tree fern-derived metabolic products in human cell biology, particularly in thyroid cells. Full article
(This article belongs to the Special Issue Molecular Approach to Fern Development)
Show Figures

Figure 1

17 pages, 3157 KB  
Review
Green Strategies for the Synthesis of Heterocyclic Derivatives with Potential Against Neglected Tropical Diseases
by Vinícius Augusto Campos Péret and Renata Barbosa de Oliveira
Reactions 2025, 6(4), 66; https://doi.org/10.3390/reactions6040066 (registering DOI) - 2 Dec 2025
Abstract
Neglected tropical diseases (NTDs) remain a significant global health burden, exacerbated by the ongoing climate emergency, which alters disease distribution and increases vulnerability in affected populations. The urgent need for novel therapeutics demands innovative approaches in drug discovery, with heterocyclic compounds serving as [...] Read more.
Neglected tropical diseases (NTDs) remain a significant global health burden, exacerbated by the ongoing climate emergency, which alters disease distribution and increases vulnerability in affected populations. The urgent need for novel therapeutics demands innovative approaches in drug discovery, with heterocyclic compounds serving as versatile scaffolds due to their diverse electronic and structural properties that enable potent biological activity. This review highlights how green chemistry principles have been applied to the construction of bioactive heterocyclic cores relevant to NTD drug development. Key sustainable methodologies are discussed, including microwave-assisted solvent-free and green-solvent reactions, ultrasound-assisted synthesis, mechanochemical one-pot multistep strategies, and the use of ionic liquids and deep eutectic solvents as environmentally benign catalysts and reaction media. By focusing on these approaches, the review emphasizes how green synthetic strategies can accelerate the development of pharmacologically relevant heterocycles while minimizing environmental impact, resource consumption, and hazardous waste generation. Full article
(This article belongs to the Special Issue Advances in Organic Synthesis for Drug Discovery and Development)
Show Figures

Figure 1

13 pages, 9405 KB  
Article
Characterization of Antimicrobial Compounds from Trichoderma flavipes Isolated from Freshwater Environments
by Jeong Tae Kim, Won Su Cheon, Sanghee Lee, Jaeduk Goh, Chang Soo Lee and Hye Yeon Mun
J. Fungi 2025, 11(12), 857; https://doi.org/10.3390/jof11120857 (registering DOI) - 2 Dec 2025
Abstract
Traditional antibiotic agents are commonly employed in the control of pathogenic microorganisms. However, there is a growing need for novel alternative antimicrobial agents owing to the increasing prevalence of resistance to these treatments. Freshwater fungi, recognized for producing diverse secondary metabolites with biological [...] Read more.
Traditional antibiotic agents are commonly employed in the control of pathogenic microorganisms. However, there is a growing need for novel alternative antimicrobial agents owing to the increasing prevalence of resistance to these treatments. Freshwater fungi, recognized for producing diverse secondary metabolites with biological activities, offer promising sources for drug development. However, studies on Trichoderma flavipes remain limited. Therefore, this study was conducted to investigate the antimicrobial properties of bioactive compounds derived from Trichoderma flavipes FBCC-F1632, a fungal species isolated from freshwater environments in Korea. The fungal strain FBCC-F1632 was isolated from stream soil obtained from Mungyeon-si, Republic of Korea, and identified through DNA extraction and phylogenetic analysis. Antimicrobial activity against Staphylococcus aureus and Bacillus cereus was assessed, revealing significant inhibitory rates. Potential bioactive compounds were extracted, purified, and structurally characterized using chromatographic and spectroscopic techniques, including nuclear magnetic resonance and mass spectrometry. Five bioactive compounds were identified: F1632-1 (cordyol C), F1632-2 (diorcinol), F1632-3 (violaceol I), F1632-4 (tryptophol), and F1632-6 (violaceol II). These compounds exhibited notable antimicrobial activities, particularly against Staphylococcus aureus and Bacillus cereus, underscoring their potential as candidates for the development of novel antimicrobial therapeutics. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

34 pages, 9898 KB  
Article
Physiological and Multi-Omics Insights into Trichoderma harzianum Alleviating Aged Microplastic Stress in Nicotiana benthamiana
by Feiyan Wang, Xiaoyan Sun, Ke Wang, Bibo Long, Fayong Li and Dong Xie
Int. J. Mol. Sci. 2025, 26(23), 11667; https://doi.org/10.3390/ijms262311667 - 2 Dec 2025
Abstract
Microplastics derived from biodegradable PBAT film, widely used in agriculture, pose ecological and biological hazards. This study explores how Trichoderma harzianum T4 mitigates this microplastic-induced stress in Nicotiana benthamiana. Using five experimental setup-control (CK), low/high-dose aged microplastics (MP80/MP320), and their co-treatments with [...] Read more.
Microplastics derived from biodegradable PBAT film, widely used in agriculture, pose ecological and biological hazards. This study explores how Trichoderma harzianum T4 mitigates this microplastic-induced stress in Nicotiana benthamiana. Using five experimental setup-control (CK), low/high-dose aged microplastics (MP80/MP320), and their co-treatments with T. harzianum T4 (MP80+T4/MP320+T4), multi-omics analyses reveal the microplastic stress-alleviating mechanisms of T. harzianum T4. Aged microplastics significantly inhibit plant growth, promote reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation, and disrupt metabolic homeostasis. Conversely, T. harzianum T4 activates the plant antioxidant defense system, reducing ROS/MDA levels and upregulating superoxide dismutase (SOD)/peroxidase (POD) activities, and promotes biomass. Transcriptomic analysis shows T. harzianum T4 reverses gene expression patterns disrupted by microplastics, particularly in DNA replication and pentose–glucuronic acid pathways. Metagenomic sequencing indicates T. harzianum T4 restores soil microbial diversity, increases the abundance of Bacteroidota and Myxococcota, downregulates antibiotic resistance genes (e.g., tetA5, MDR), and upregulates carbohydrate-active enzymes (CAZys), thereby enhancing carbon metabolism. In conclusion, T. harzianum T4 alleviates microplastic stress through a tripartite mechanism: activating plant stress-response gene networks, reshaping soil microbial communities, and modulating functional gene expression, offering a promising bioremediation strategy. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

7 pages, 743 KB  
Short Note
1-[4-(4-Chlorophenyl)piperazin-1-yl]-2-[(4-phenyl-4H-1,2,4-triazol-3-yl)sulfanyl]ethan-1-one
by Wiktoria Drzał, Jarosław Sobstyl and Nazar Trotsko
Molbank 2025, 2025(4), M2097; https://doi.org/10.3390/M2097 (registering DOI) - 2 Dec 2025
Abstract
Heterocyclic systems such as 1,2,4-triazoles and piperazines play an important role in modern medicinal chemistry due to their structural diversity and broad spectrum of biological activities. In this Short Note, we report the synthesis and spectroscopic characterization of a new hybrid molecule combining [...] Read more.
Heterocyclic systems such as 1,2,4-triazoles and piperazines play an important role in modern medicinal chemistry due to their structural diversity and broad spectrum of biological activities. In this Short Note, we report the synthesis and spectroscopic characterization of a new hybrid molecule combining both pharmacophoric fragments: 1-[4-(4-chlorophenyl)piperazin-1-yl]-2-[(4-phenyl-4H-1,2,4-triazol-3-yl)sulfanyl]ethan-1-one (compound 3). The compound was obtained in 70% yield via S-alkylation of 4-phenyl-1,2,4-triazole-3-thione with a chloroacetyl derivative of 4-chlorophenylpiperazine under alkaline conditions. The structure of 3 was confirmed by 1H and 13C NMR spectroscopy, DEPT-135, 2D NMR (COSY, NOESY, HSQC, HMBC), FT-IR, and elemental analysis. These results support the utility of combining triazole and piperazine fragments in the design of new heterocyclic frameworks with potential biological relevance. Full article
Show Figures

Figure 1

39 pages, 16826 KB  
Review
Recent Developments in Pneumatic Artificial Muscle Actuators
by Aliya Zhagiparova, Vladimir Golubev and Daewon Kim
Actuators 2025, 14(12), 582; https://doi.org/10.3390/act14120582 (registering DOI) - 1 Dec 2025
Abstract
Pneumatic Artificial Muscles (PAMs) are soft actuators that mimic the contractile behavior of biological muscles through fluid-driven deformation. Originating from McKibben’s 1950s braided design, PAMs have evolved into a diverse class of actuators, offering high power-to-weight ratios, compliance, and safe human interaction, with [...] Read more.
Pneumatic Artificial Muscles (PAMs) are soft actuators that mimic the contractile behavior of biological muscles through fluid-driven deformation. Originating from McKibben’s 1950s braided design, PAMs have evolved into a diverse class of actuators, offering high power-to-weight ratios, compliance, and safe human interaction, with applications spanning rehabilitation, assistive robotics, aerospace, and adaptive structures. This review surveys recent developments in actuation mechanisms and applications of PAMs. Traditional designs, including braided, pleated, netted, and embedded types, remain widely used but face challenges such as hysteresis, limited contraction, and nonlinear control. To address these limitations, researchers have introduced non-traditional mechanisms such as vacuum-powered, inverse, foldable, origami-based, reconfigurable, and hybrid PAMs. These innovations improve the contraction range, efficiency, control precision, and integration into compact or untethered systems. This review also highlights applications beyond conventional biomechanics and automation, including embodied computation, deployable aerospace systems, and adaptive architecture. Collectively, these advances demonstrate PAMs’ expanding role as versatile soft actuators. Ongoing research is expected to refine material durability, control strategies, and multifunctionality, enabling the next generation of wearable devices, soft robots, and energy-efficient adaptive systems. Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators—2nd Edition)
Show Figures

Figure 1

29 pages, 3298 KB  
Review
Soil Aggregate Dynamics and Stability: Natural and Anthropogenic Drivers
by Ameer Hamza, Danutė Karčauskienė, Ieva Mockevičienė, Regina Repšienė, Mukkram Ali Tahir, Muhammad Zeeshan Manzoor, Shehnaz Kousar, Sumaira Salahuddin Lodhi, Nazima Rasool and Ikram Ullah
Agriculture 2025, 15(23), 2500; https://doi.org/10.3390/agriculture15232500 - 1 Dec 2025
Abstract
Soil aggregate stability is a key indicator of soil health and is fundamental to soil processes such as water infiltration, nutrient cycling, carbon sequestration, erosion control, and ecosystem functionality. However, research concerning the impact of natural and anthropogenic factors on SAS across different [...] Read more.
Soil aggregate stability is a key indicator of soil health and is fundamental to soil processes such as water infiltration, nutrient cycling, carbon sequestration, erosion control, and ecosystem functionality. However, research concerning the impact of natural and anthropogenic factors on SAS across different climates, soil types, and management practices is lacking. This review synthesizes current understanding of physical, chemical, and biological mechanisms that govern the aggregate formation and stability and brings to light how the natural and anthropogenic drivers influence these processes. It highlights how clay mineralogy, root systems, microbial diversity, soil organic matter, and management practices shape the structure and turnover of aggregates essential for agricultural productivity. Key drivers of aggregate formation, categorized into natural (such as texture, clay mineral interaction, biota, and climate) and anthropogenic (such as tillage, land use changes, organic amendments) factors, have been critically evaluated. This review provides an insightful framework for soil management that may help enhance soil aggregation and promote sustainable agriculture and food security, especially under climate change. Full article
(This article belongs to the Topic Recent Advances in Soil Health Management)
Show Figures

Figure 1

19 pages, 1483 KB  
Article
A Stereospecific Synthesis and In Vitro Anti-Influenza H1N1 Properties of Lithocholic Acid-Based Spiro-1,2,4-trioxolane
by Irina Smirnova, Alexander Lobov, Liana Zakirova, Dmitriy Polovyanenko, Irina Bagryanskaya, Vladimir Zarubaev and Oxana Kazakova
Molecules 2025, 30(23), 4613; https://doi.org/10.3390/molecules30234613 (registering DOI) - 1 Dec 2025
Abstract
Bile acids provide a versatile platform for the design of biologically active compounds due to their amphiphilic structure, biocompatibility, and capacity for diverse chemical modifications. Among them, lithocholic acid is a promising scaffold for designing and revealing new antiviral agents. A novel lithocholic [...] Read more.
Bile acids provide a versatile platform for the design of biologically active compounds due to their amphiphilic structure, biocompatibility, and capacity for diverse chemical modifications. Among them, lithocholic acid is a promising scaffold for designing and revealing new antiviral agents. A novel lithocholic acid-based 3-spiro-1,2,4-trioxolane was synthesized by Griesbaum co-ozonolysis of methyl 3-O-methyl-oximino-lithocholate and 4-(trifluoromethyl)-cyclohexanone, and its structure was confirmed by 2D NMR and X-ray crystallographic analysis. Lithocholic acid derivatives were evaluated for cytotoxicity and anti-influenza activity against A/Puerto Rico/8/34 (H1N1), showing that steroid 1,2,4-trioxolane 3 exhibited the highest potency (IC50 4.3 µM, SI 11) compared to the parent methyl-3-oxo-lithocholate 1 (IC50 > 84 µM, SI 1). In silico ADME predictions revealed several favorable drug-like properties, including a highly three-dimensional structure (Fsp3 = 0.97), significant lipophilicity (LogP = 7.54), and the presence of key pharmacophores such as a peroxide moiety and a trifluoromethyl group. Taken together, a stereospecific synthesis of a lithocholic acid 3-spiro-1,2,4-trioxolane by Griesbaum co-ozonolysis was realized and the first evidence of anti-influenza activity in the steroid-1,2,4-trioxolane series was found. Full article
Show Figures

Graphical abstract

33 pages, 2550 KB  
Review
Comprehensive Review on the Biomedical Applications of Marine Algal Polysaccharides
by Ashwini A. Waoo, Sukhendra Singh, Neha Chandra, Shaily Mishra, Manish Pratap Singh, Joyabrata Mal, Abhimanyu Kumar Jha, Jeong Chan Joo and Ashutosh Pandey
Phycology 2025, 5(4), 80; https://doi.org/10.3390/phycology5040080 (registering DOI) - 1 Dec 2025
Abstract
Marine algal polysaccharides (MAPs) are multifunctional biopolymers with significant potential in biomedical applications. Derived from brown, red, and green algae, key examples include alginate, agar, carrageenan, fucoidan, ulvan, and laminarin. Their structural diversity underlies a broad range of biological activities, particularly among sulfated [...] Read more.
Marine algal polysaccharides (MAPs) are multifunctional biopolymers with significant potential in biomedical applications. Derived from brown, red, and green algae, key examples include alginate, agar, carrageenan, fucoidan, ulvan, and laminarin. Their structural diversity underlies a broad range of biological activities, particularly among sulfated polysaccharides, which exhibit antiviral, anticancer, anticoagulant, immunomodulatory, and antioxidant effects. Owing to their biocompatibility and tunable physicochemical properties, MAPs are also valuable in wound healing, tissue regeneration, and drug delivery. Advances in ultrasound-, microwave-, and enzyme-assisted extraction methods have enhanced yield and functionality. This review combines structural, extraction, and biomedical views on MAPs, with a focus on how molecular characteristics relate to their potential as drugs. Future work should focus on scalable green extraction, molecular-level characterization, and clinical validation to develop MAPs-based biomaterials for next-generation drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Seaweed Metabolites)
Show Figures

Figure 1

9 pages, 990 KB  
Review
The Ohrid Trout: A “Living Fossil” Endemic to Lake Ohrid Left Behind by Science
by Tânia Vieira Madureira, Maria João Rocha, Eduardo Rocha and Maja Jordanova
Hydrobiology 2025, 4(4), 32; https://doi.org/10.3390/hydrobiology4040032 - 1 Dec 2025
Abstract
The Ohrid trout (Salmo letnica) is a species endemic to Lake Ohrid (shared by Albania and North Macedonia), which is internationally recognized for its geological longevity and unique natural features. Given that the species has distinctive biological, ecological, and evolutionary characteristics, [...] Read more.
The Ohrid trout (Salmo letnica) is a species endemic to Lake Ohrid (shared by Albania and North Macedonia), which is internationally recognized for its geological longevity and unique natural features. Given that the species has distinctive biological, ecological, and evolutionary characteristics, as well as significant economic value, the decline in this trout’s population is a serious and urgent problem, deserving continuous, scientifically based management. Yet, although it is considered a “Fossil Trout”, research on this species remains limited in relation to science and conservation. To understand the current state of the art, we conducted a systematic review in Web of Science, analyzing 31 indexed articles about the Ohrid trout. These studies primarily focused on the seasonal morphological characteristics of specific organs, phylogenetics, and, to a lesser extent, the impacts of environmental contamination. However, notable gaps exist in understanding sex- and stage-specific physiology, morphotype diversity, and pollutant bioaccumulation. To address these limitations, integrative strategies that combine multi-omics biomarker development, genetic screening of broodstock, and systematic monitoring of pollution and climate-related stressors are crucial. Regional authorities should work with international organizations to establish long-term monitoring of S. letnica. This review aims to provide a critical foundation for overcoming the “Living Fossil Left Behind by Science” paradigm and to foster global initiatives to preserve the long-term survival and evolutionary legacy of this endangered species. Full article
Show Figures

Figure 1

18 pages, 372 KB  
Article
Glucosinolate-Derived Metabolites from Barbarea vulgaris (Brassicaceae): Evaluation of Antimicrobial, Antioxidant, and Anti-Inflammatory Potentials
by Elvira Mavrić-Scholze, Amina Gusinac, Milan Dekić, Ivan Palić, Edina Avdović, Dušica Simijonović, Mirjana Grujović, Katarina Marković, Vladimir Dobričić, Jelena Bošković, Zoran Marković and Niko Radulović
Molecules 2025, 30(23), 4606; https://doi.org/10.3390/molecules30234606 (registering DOI) - 30 Nov 2025
Abstract
Glucosinolate-derived metabolites play central roles in plant defense and are increasingly recognized for their pharmacological importance. Barbarea vulgaris produces a structurally diverse set of such compounds, yet their biological activities remain insufficiently explored. In this study, natural metabolites and their synthetic analogues were [...] Read more.
Glucosinolate-derived metabolites play central roles in plant defense and are increasingly recognized for their pharmacological importance. Barbarea vulgaris produces a structurally diverse set of such compounds, yet their biological activities remain insufficiently explored. In this study, natural metabolites and their synthetic analogues were evaluated for antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties. Antimicrobial activity was assessed against human and plant pathogens by determining minimum inhibitory and minimum microbicidal concentrations, antibiofilm potential was examined using microplate assays, and radical scavenging activity was measured by DPPH and ABTS assays. In addition, the compounds were screened for inhibitory effects on lipoxygenase (LOX) and cyclooxygenase-2 (COX-2). Phenolic derivatives, particularly methyl-4-hydroxyphenylethyl dithiocarbamate (2) and 2-(4-hydroxyphenyl)ethyl isothiocyanate (8), exhibited notable in vitro antibacterial activity (MIC 0.312–1.25 mg mL−1 against E. coli ATCC 25922 and S. aureus ATCC 25923) and detectable antibiofilm effects. Racemic barbarin (4) preferentially inhibited LOX, underscoring its potential as an anti-inflammatory scaffold, whereas COX-2 inhibition was weak across all tested compounds. None of the metabolites showed radical scavenging activity, suggesting that their effects rely on enzyme inhibition or microbial interactions rather than nonspecific antioxidant mechanisms. This study provides an integrated evaluation of B. vulgaris metabolites, highlighting their ecological role in plant defense and their potential as scaffolds for novel antimicrobial and anti-inflammatory agents. Full article
Show Figures

Graphical abstract

20 pages, 1391 KB  
Review
Secretory Leukocyte Protease Inhibitor: A Pleiotropic Molecule for the Potential Diagnosis of and Therapy for Acute Kidney Injury
by Rui Chen, Shiyun Gu, Fenfen Xiong, Lili Ji, Zhi-Jun Zhang, Bin Yang and Yuanyuan Wu
Int. J. Mol. Sci. 2025, 26(23), 11631; https://doi.org/10.3390/ijms262311631 - 30 Nov 2025
Abstract
Acute kidney injury (AKI) remains a common clinical syndrome associated with high morbidity and mortality. However, effective diagnostic biomarkers and specific therapeutic interventions are still lacking. Secretory leukocyte protease inhibitor (SLPI), a serine protease inhibitor with pleiotropic functions, has emerged as an early [...] Read more.
Acute kidney injury (AKI) remains a common clinical syndrome associated with high morbidity and mortality. However, effective diagnostic biomarkers and specific therapeutic interventions are still lacking. Secretory leukocyte protease inhibitor (SLPI), a serine protease inhibitor with pleiotropic functions, has emerged as an early diagnostic and prognostic biomarker for AKI. Clinical studies reveal significant elevation of serum SLPI in AKI patients compared to non-AKI patients at the acute phase following post-cardiovascular surgery, supporting its diagnostic potential. Furthermore, evidence also suggests that SLPI showed prognostic value for kidney transplantation and chronic kidney disease progression associated with diverse etiology, including diabetes. In addition, current evidence highlights the biological functions of SLPI in inhibiting NF-κB activities, suppressing neutrophil extracellular trap formation, modulating phagocytosis, regulating cell apoptosis, proliferation, differentiation, and potentially fibrosis across various disease contexts. Preclinical studies demonstrate that administration of recombinant SLPI ameliorates renal dysfunction in multiple AKI models, including ischemia–reperfusion injury and nephrotoxic models induced by gentamicin or cisplatin. Furthermore, the antifibrotic properties of SLPI underscore its therapeutic potential in halting AKI progression to chronic kidney disease. By integrating available evidence, this review aims to elucidate that, as an early acute-phase response molecule, SLPI serves dual roles as not only an early diagnostic and prognostic biomarker for AKI, but also a renoprotective molecule countering kidney injury. Full article
Show Figures

Figure 1

20 pages, 3014 KB  
Article
Holobiome Structure and Microbial Core Assemblages of Deschampsia antarctica Across the South Shetland Islands
by Rodrigo Rodriguez, Patricio Javier Barra, Manuel Saldivar-Diaz, Giovanni Larama, Roxana Alvarado, Dariel López, Mabel Delgado, Julieta Orlando, Rómulo Oses, Carolina Merino, Gonzalo Tortella and Paola Duran
Plants 2025, 14(23), 3657; https://doi.org/10.3390/plants14233657 (registering DOI) - 30 Nov 2025
Abstract
Antarctica harbors some of the most extreme ecosystems on earth, where only two vascular plants persist. The native grass Deschampsia antarctica provides a model for plant–microbe interactions under intense abiotic stress. We present the first multi-compartmental and multi-kingdom characterization of bacterial and fungal [...] Read more.
Antarctica harbors some of the most extreme ecosystems on earth, where only two vascular plants persist. The native grass Deschampsia antarctica provides a model for plant–microbe interactions under intense abiotic stress. We present the first multi-compartmental and multi-kingdom characterization of bacterial and fungal communities associated with D. antarctica across three South Shetland Islands. Metabarcoding revealed strong compartmentalization: the rhizosphere displayed the highest richness and complex bacterial–fungal networks; the root endosphere showed intermediate diversity with keystone taxa such as Rhizobiales and Streptomyces; and the leaf endosphere was simplified, dominated by stress-tolerant taxa including Pseudomonas and Helotiales. Despite marked soil heterogeneity, phosphorus enrichment at Admiralty Bay, base cations at Coppermine Cove, and iron at Byers Peninsula, a conserved core (20 bacterial and 5 fungal genera) persisted, mainly cold-adapted saprotrophs and plant-associated taxa. Fungal assemblages were more responsive to soil chemistry, with site-specific enrichments such as Zymoseptoria and Herpotrichia. Overall, D. antarctica holobionts exhibited a dual strategy: conserved microbial backbones confer stability, while localized assemblages shaped by soil chemistry and geography enhance adaptability. Together, these findings provide one of the most integrative characterizations of the D. antarctica holobiont to date, revealing how conserved and adaptive microbial components support plant resilience under extreme Antarctic conditions and offering valuable insights for predicting biological responses to ongoing climate change. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 520 KB  
Review
Research Progress on the Regulation and Developmental Utilization of Bioactive Metabolites Synthesis in Floccularia luteovirens
by Tongjia Shi, Lihua Tang, Siyuan Gou, Wensheng Li, Chunxiao Xu and Xu Zhao
J. Fungi 2025, 11(12), 854; https://doi.org/10.3390/jof11120854 (registering DOI) - 30 Nov 2025
Abstract
Floccularia luteovirens is a rare edible and medicinal fungus endemic to the Qinghai–Tibet Plateau, prized for its abundance of high-value bioactive metabolites such as polysaccharides, terpenoids, and ergothioneine, which exhibit a variety of biological activities including immunomodulatory, antioxidant, and antitumor effects. Due to [...] Read more.
Floccularia luteovirens is a rare edible and medicinal fungus endemic to the Qinghai–Tibet Plateau, prized for its abundance of high-value bioactive metabolites such as polysaccharides, terpenoids, and ergothioneine, which exhibit a variety of biological activities including immunomodulatory, antioxidant, and antitumor effects. Due to the current lack of successful domestication and limited wild resources, liquid fermentation technology has become an important strategy for the large-scale production of its mycelium and bioactive components. This review systematically summarizes the biological characteristics of F. luteovirens, the diversity of its metabolites, biosynthetic pathways, regulatory mechanisms influenced by environmental factors, and the application of multi-omics technologies in related research. It is suggested that future studies should integrate multi-omics approaches to elucidate its stress response and metabolic regulatory networks, and achieve high-value utilization of this resource through stress-resistant breeding and optimization of fermentation processes. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Graphical abstract

27 pages, 3447 KB  
Article
Genetic Insight into Expression-Defined Melanoma Subtypes and Network Mechanisms: An in Silico Study
by Desirèe Speranza, Mariapia Marafioti, Martina Musarra, Vincenzo Cianci, Cristina Mondello, Maria Francesca Astorino, Mariacarmela Santarpia, Natasha Irrera, Mario Vaccaro, Nicola Silvestris, Concetta Crisafulli, Marco Calabrò and Silvana Briuglia
Genes 2025, 16(12), 1428; https://doi.org/10.3390/genes16121428 - 30 Nov 2025
Abstract
Background: Melanoma is a highly heterogeneous neoplasia in which transcriptional profile encodes much of the biological diversity that determines tumor progression and therapeutic response. To refine its molecular stratification and profiles characterization, we conducted an in silico transcriptomic analysis. Methods: Public microarray datasets [...] Read more.
Background: Melanoma is a highly heterogeneous neoplasia in which transcriptional profile encodes much of the biological diversity that determines tumor progression and therapeutic response. To refine its molecular stratification and profiles characterization, we conducted an in silico transcriptomic analysis. Methods: Public microarray datasets from the GEO and ArrayExpress were examined, and the E-MTAB-6697 expression dataset was selected. We used a K-Means clustering algorithm to stratify 194 tumor samples into expression-driven subgroups and analyzed each one to define their transcriptional and biological profiles. Differential expression analysis between identified clusters and controls was performed. Additionally, we applied Weighted-Gene correlation analysis to identify coordinated expression hubs in the tumor dataset and tested the resulting modules for correlation with the identified clusters. Results: Unsupervised clustering of melanoma transcriptomic profiles identified three distinct molecular subtypes characterized by divergent biological programs. While all clusters shared the dysregulation of pathways involved in epidermal differentiation, immune response, and lipid metabolism, they diverged in proliferation, phenotypic plasticity, metabolic adaptation, and apoptotic regulation. Cluster A was characterized by enrichment in DNA replication, repair, and mitochondrial metabolism modules, suggesting a proliferative yet genomically stable state. Cluster B showed enrichment in immune and cytokine signaling pathways alongside reduced proliferative activity, consistent with a quiescent or transitional phenotype. Cluster C displayed coordinated enrichment in cell-cycle, DNA-maintenance, and neuroectodermal reprogramming pathways, indicating a highly plastic and proliferative subtype. Despite these molecular distinctions, all clusters retained an “immunologically hot” profile (IPS 7–8), indicating potential responsiveness to immunotherapy. Conclusions: These findings provide an overview of the functional characteristics of melanoma heterogeneity and identify biological processes that could be targeted by drugs for the development of tailored therapies for each subtype. Nevertheless, future studies in independent clinically annotated cohorts would be required. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

Back to TopTop