Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,312)

Search Parameters:
Keywords = biomass-based

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1438 KB  
Article
Impact of Stocking Density on Growth, Feeding Behavior, and Flesh Quality of Largemouth bass (Micropterus salmoides) in Coupled Aquaponic Systems
by Marco Birolo, Veronica Trabacchin, Paolo Sambo, Stefano Triolone and Carlo Nicoletto
Fishes 2025, 10(11), 552; https://doi.org/10.3390/fishes10110552 (registering DOI) - 2 Nov 2025
Abstract
Stocking density is a key driver of performance in aquaponics, affecting both fish welfare and crop yield. This study evaluated the impact of three initial stocking densities (3.1, 4.1, and 6.2 kg/m3) on survival, growth, feeding behavior, carcass and filet quality [...] Read more.
Stocking density is a key driver of performance in aquaponics, affecting both fish welfare and crop yield. This study evaluated the impact of three initial stocking densities (3.1, 4.1, and 6.2 kg/m3) on survival, growth, feeding behavior, carcass and filet quality of largemouth bass (Micropterus salmoides), as well as on the yield of lettuce (Lactuca sativa), sweet basil (Ocimum basilicum), and Swiss chard (Beta vulgaris var. cicla) cultivated in vertical coupled aquaponic units. A total of 184 fish (109 ± 28 g) were reared for 176 days in nine independent recirculating systems. Fish reared at the lowest density achieved the highest final live weight and specific growth rate, with a better feed conversion ratio, whereas performance declined at higher densities despite similar survival rates. Feeding behavior was generally consistent across groups, although feed intake rate was reduced at the highest density. Carcass and filet quality traits were unaffected by stocking density. Vegetable yield was enhanced by higher fish biomass, with significant increases in lettuce production and a positive trend for basil. These findings indicate that intermediate stocking densities may represent the most sustainable compromise, ensuring fish welfare and acceptable growth while supporting efficient plant production in largemouth bass–based aquaponics. Full article
(This article belongs to the Special Issue Fish Health and Welfare in Aquaculture and Research Settings)
Show Figures

Figure 1

9 pages, 369 KB  
Article
Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing
by Dimitrios Moutousidis, Konstantina Karidi, Eleftheria Athanassiadou, Katiana Filippi, Nikos Giannakis, Apostolos Koutinas and Eleni Stylianou
Adhesives 2025, 1(4), 13; https://doi.org/10.3390/adhesives1040013 (registering DOI) - 1 Nov 2025
Abstract
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type [...] Read more.
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type resins. Plywood panels were produced bonded with the novel experimental resins, exhibiting satisfactory performance, comparable to the reference panels in terms of both shear strength and wood failure, based on the requirements of the European standards. The results demonstrate the potential of using biomass-derived compounds as substitutes for petrochemical phenol in the production of wood adhesives, thereby increasing the bio-based content of the wood panel composites produced with them and improving their sustainability. Full article
(This article belongs to the Special Issue Advances in Bio-Based Wood Adhesives)
Show Figures

Figure 1

22 pages, 3835 KB  
Article
Planting Date and Cultivar Selection Effects on Cauliflower Growth, Physiology, and Yield Performance in North Dakota Growing Conditions
by Ajay Dhukuchhu, Ozkan Kaya and Harlene Hatterman-Valenti
Horticulturae 2025, 11(11), 1314; https://doi.org/10.3390/horticulturae11111314 (registering DOI) - 1 Nov 2025
Abstract
Investigating the optimal planting strategies for brassica vegetables under variable climatic conditions is essential for developing sustainable production systems in northern agricultural regions. However, comprehensive knowledge about how planting timing modulates growth, physiological responses, and yield parameters across different cultivars remains limited. We [...] Read more.
Investigating the optimal planting strategies for brassica vegetables under variable climatic conditions is essential for developing sustainable production systems in northern agricultural regions. However, comprehensive knowledge about how planting timing modulates growth, physiological responses, and yield parameters across different cultivars remains limited. We investigated vegetative development, root morphology, physiological efficiency, and marketable yield in six cauliflower cultivars (‘Amazing’, ‘Cheddar’, ‘Clementine’, ‘Flame Star’, ‘Snow Crown’, and ‘Vitaverde’) subjected to four planting dates (May 1, May 15, June 1, and June 15) across two growing seasons (2023–2024), followed by detailed morphological and physiological profiling. Planting date, cultivar selection, and seasonal variation significantly influenced all measured parameters (p < 0.001), with notable interaction effects observed for fresh root weight, stomatal conductance, water use efficiency, and yield components. Early planted cultivars consistently demonstrated superior performance under variable environmental conditions, maintaining higher growth rates, enhanced root development, and improved physiological efficiency, particularly ‘Flame Star’, ‘Snow Crown’, and ‘Cheddar’, compared to late-planted treatments. Recovery of optimal plant development was most pronounced at May planting dates, with early-established crops showing better maintenance of vegetative growth patterns and enhanced yield potential, including higher curd weights (585.7 g for ‘Flame Star’) and superior marketable grades. Morphological profiling revealed distinct clustering patterns, with early-planted cultivars forming separate groups characterized by elevated root biomass, enhanced physiological parameters, and superior yield characteristics. In contrast, late-planted crops showed reduced performance, indicative of environmental stress responses. We conclude that strategic early planting significantly enhances cauliflower production resilience through comprehensive optimization of growth, physiological, and yield parameters, particularly under May establishment conditions. The differential performance responses between planting dates provide insights for timing-based management strategies, while the quantitative morphological and physiological profiles offer valuable parameters for assessing crop adaptation and commercial viability potential under variable climatic scenarios in northern agricultural systems. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

16 pages, 3940 KB  
Article
Effectiveness of High-Solid Loading Treatments to Enhance Nutrient and Antioxidant Bioavailability in Codium tomentosum
by Catarina Ramos-Oliveira, Marta Ferreira, Isabel Belo, Aires Oliva-Teles and Helena Peres
Phycology 2025, 5(4), 69; https://doi.org/10.3390/phycology5040069 (registering DOI) - 1 Nov 2025
Abstract
Macroalgae have low nutrient bioavailability, often requiring pretreatments—physical, chemical, or biological—typically using low-solid loading hydrolysis, which produces separate liquid and solid phases. In contrast, high-solid loading hydrolysis offers a single-phase alternative, though it remains underexplored for macroalgae. This study evaluated the effectiveness of [...] Read more.
Macroalgae have low nutrient bioavailability, often requiring pretreatments—physical, chemical, or biological—typically using low-solid loading hydrolysis, which produces separate liquid and solid phases. In contrast, high-solid loading hydrolysis offers a single-phase alternative, though it remains underexplored for macroalgae. This study evaluated the effectiveness of high-solid loading hydrolysis for breaking polysaccharides and increasing the availability of nutrients and antioxidant compounds in Codium tomentosum. Treatments using mixtures containing 25% dry biomass and 75% water or 0.5N and 1N NaOH, autoclaved for 30 or 60 min, were performed. Among the tested treatments, high-solid loading alkaline autoclaved treatment (1N NaOH, 60 min) was most effective in reducing neutral detergent fiber and enhancing the availability of bioactive compounds, particularly soluble proteins and phenols. Based on these results, a sequential enzymatic hydrolysis with Natugrain® at 0.2 and 0.4% was also applied to pre-treated C. tomentosum with water or 1N NaOH. Enzymatic hydrolysis after autoclaving had no major effect on fiber, soluble protein, or ash, but increased phenol levels. In conclusion, high-solid loading alkaline treatment (1N NaOH) followed by enzymatic hydrolysis with Natugrain® enzyme reduced fiber content and enhanced soluble protein and phenolic compounds, thereby improving the nutritional and functional potential of C. tomentosum for inclusion in animal feeds. Full article
Show Figures

Figure 1

19 pages, 1523 KB  
Article
Hybrid Poly(Lactic)-Chitosan Scaffold Intensifying In Situ Bioprocessing of Rindera graeca Transgenic Roots for Enhanced Rinderol Production
by Kamil Wierzchowski, Szymon Bober, Aleksandra Bandzerewicz, Miroslav Šlouf, Jiří Hodan, Agnieszka Gadomska-Gajadhur, Katarzyna Sykłowska-Baranek and Maciej Pilarek
Int. J. Mol. Sci. 2025, 26(21), 10668; https://doi.org/10.3390/ijms262110668 (registering DOI) - 1 Nov 2025
Abstract
In vitro cultured biomass of Rindera graeca, a rare endemic plant, is an efficient renewable source of bioactive naphthoquinones, e.g., rinderol, a potential bioactive inducer of apoptosis in cancer cells. Bioengineering strategies, as biomass immobilization on functionalized biomaterial-based scaffolds, elicitation by chitosan, [...] Read more.
In vitro cultured biomass of Rindera graeca, a rare endemic plant, is an efficient renewable source of bioactive naphthoquinones, e.g., rinderol, a potential bioactive inducer of apoptosis in cancer cells. Bioengineering strategies, as biomass immobilization on functionalized biomaterial-based scaffolds, elicitation by chitosan, and in situ extraction of metabolites, are tested for intensifying naphthoquinones production in R. graeca hairy roots. The aim of the study was to investigate the effects of hybrid poly(lactic)–chitosan scaffolds on biomass proliferation and rinderol production in R. graeca hairy roots. Effects of chitosan origin (fungal or squid), molecular mass (350–1800 kDa), and concentration (up to 45%) in the developed hybrid scaffolds have been quantitatively identified, and the results were compared to the reference culture system containing an unmodified PLA-based construct. Applying PLA–chitosan scaffold containing 33% of fungal chitosan resulted in 635 times higher rinderol production (3660 µg gDW−1) than the application of reference scaffolds. Among the tested parameters, the chitosan concentration in the hybrid scaffolds revealed significant importance in rinderol production. To sum up, the developed hybrid PLA-chitosan scaffold may be recognized as a functional key element supporting the production of naphthoquinones in cultures of R. graeca biomass. Full article
(This article belongs to the Special Issue Drug Discovery: Natural Products and Compounds)
21 pages, 895 KB  
Review
Hybrid Biocatalysis with Photoelectrocatalysis for Renewable Furan Derivatives’ Valorization: A Review
by Shize Zheng, Xiangshi Liu, Bingqian Guo, Yanou Qi, Xifeng Lv, Bin Wang and Di Cai
Photochem 2025, 5(4), 35; https://doi.org/10.3390/photochem5040035 (registering DOI) - 1 Nov 2025
Abstract
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With [...] Read more.
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With the evolution of green chemistry and environmental concern, hybrid photoelectro-biocatalysis (HPEB) platforms are seen as a new approach to enhance biocatalysis. This strategy greatly expands the domain of natural biocatalysis, especially for bio-based components. The selective valorization of renewable furan derivatives, such as 5-hydroxymethylfurfural (HMF) and furfural, is central to advancing biomass-based chemical production. Biocatalysis offers high chemo-, regio-, and stereo-selectivity under mild conditions compared with traditional chemical catalysis, yet it is often constrained by the costly and inefficient regeneration of redox cofactors like NAD(P)H. Photoelectrocatalysis provides a sustainable means to supply reducing equivalents using solar or electrical energy. In recent years, hybrid systems that integrate biocatalysis with photoelectrocatalysis have emerged as a promising strategy to overcome this limitation. This review focuses on recent advances in such systems, where photoelectrochemical platforms enable in situ cofactor regeneration to drive enzymatic transformations of furan-based substrates. We critically analyze representative coupling strategies, materials and device configurations, and reaction engineering approaches. Finally, we outline future directions for developing efficient, robust, and industrially viable hybrid catalytic platforms for green biomass valorization. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

19 pages, 3329 KB  
Article
Reduced Graphene Oxide Modulates Physiological Responses of Lemna minor Under Environmental Heavy Metal Stress
by Marco D’Eugenio, Barbara Casentini and M. Adelaide Iannelli
Environments 2025, 12(11), 407; https://doi.org/10.3390/environments12110407 (registering DOI) - 1 Nov 2025
Abstract
The expanding development of graphene-based materials (GBMs) requires immediate and balanced environmental assessment balancing two key areas: investigating the risk of graphene oxide toxicity to ecosystems and evaluating GBMs’ potential to act as solutions for challenges like heavy metal stress mitigation. This study [...] Read more.
The expanding development of graphene-based materials (GBMs) requires immediate and balanced environmental assessment balancing two key areas: investigating the risk of graphene oxide toxicity to ecosystems and evaluating GBMs’ potential to act as solutions for challenges like heavy metal stress mitigation. This study analyzed the effects of reduced graphene oxide (rGO) on copper (Cu) and nickel (Ni) toxicity in Lemna minor. Our findings reveal that rGO’s protective effects are metal-specific. L. minor demonstrated significant sensitivity to nickel, but rGO offered no mitigation; growth parameters, pigment content, and nickel accumulation showed no significant improvements with rGO co-exposure compared to Ni-plants. This suggests that rGO does not enhance L. minor’s ability to tolerate or absorb nickel, especially after 14 days (T14). In contrast, rGO showed a partially protective effect against copper toxicity. At T14, the presence of rGO significantly improved plant performance under copper stress, resulting in a 17% increase in biomass, a 19% increase in relative growth rate, and enhanced pigment content, including a 40% increase in chlorophyll when compared to Cu-plants. The protective effect of rGO was directly tied to a 37% reduction in copper accumulation, providing strong evidence that rGO reduces copper’s bioavailability, thereby limiting plant uptake. The divergent effects on Cu and Ni uptake suggest differing affinities of these metals for rGO. Future research, including large-scale experiments with various GBMs and Lemna clones, is crucial to fully assessing their phytoremediation potential. Full article
Show Figures

Figure 1

12 pages, 4280 KB  
Article
Incorporating Spectral Unmixing to Estimate Carbon Sequestration Changes in an Urban Forest Canopy
by Michael K. Crosby and T. Eric McConnell
Urban Sci. 2025, 9(11), 454; https://doi.org/10.3390/urbansci9110454 (registering DOI) - 1 Nov 2025
Abstract
The urban forest canopy provides critical ecosystem services, including carbon storage and sequestration. Healthy, well-managed trees in an urban setting can provide these services in a way comparable to forests managed for production or as nature preserves. Disturbance events threaten these benefits by [...] Read more.
The urban forest canopy provides critical ecosystem services, including carbon storage and sequestration. Healthy, well-managed trees in an urban setting can provide these services in a way comparable to forests managed for production or as nature preserves. Disturbance events threaten these benefits by reducing canopy cover and biomass. A tornado struck Ruston, Louisiana, on 25 April 2019, resulting in severe canopy damage through a swatch of the city. We used iTree Canopy to obtain estimates of ecosystem services (carbon sequestration, etc.) and converted this to a per-pixel value before interpolating for the study area. Fractional vegetation estimates obtained from spectral unmixing were obtained from pre- and post-tornado images using Sentinel-2 data and applied to weight damage. Pre- and post-tornado assessments revealed that Ruston’s urban forest canopy sequestered 85% of its pre-storm capability, with an estimated decline in social value of approximately $36,000. Assessing disturbance-based landscape changes, and subsequently calculating fractional changes in biomass and corresponding monetary impacts, will increasingly be looked to as ecosystem services and severe weather events are expected to become more commonplace in the future. The methodology employed demonstrates a cost-effective way to assess disturbance impacts in small urban areas, offering a framework to small municipalities to monitor canopy dynamics. Full article
Show Figures

Figure 1

25 pages, 9505 KB  
Article
A Comprehensive Assessment of Rangeland Suitability for Grazing Using Time-Series Remote Sensing and Field Data: A Case Study of a Steppe Reserve in Jordan
by Rana N. Jawarneh, Zeyad Makhamreh, Nizar Obeidat and Ahmed Al-Taani
Geographies 2025, 5(4), 63; https://doi.org/10.3390/geographies5040063 (registering DOI) - 1 Nov 2025
Abstract
This study employs an integrated framework that combines field-based measurements, remote sensing, and Geographic Information Systems (GISs) to monitor vegetation dynamics and assess the suitability of a steppe range reserve for livestock grazing. Forty-three surface and subsurface soil samples were collected in April [...] Read more.
This study employs an integrated framework that combines field-based measurements, remote sensing, and Geographic Information Systems (GISs) to monitor vegetation dynamics and assess the suitability of a steppe range reserve for livestock grazing. Forty-three surface and subsurface soil samples were collected in April and November 2021 to capture seasonal variations. Above-ground biomass (AGB) measurements were recorded at five sampling locations across the reserve. Six Sentinel-2 satellite imageries, acquired around mid-March 2016–2021, were processed to derive time-series Normalized Difference Vegetation Index (NDVI) data, capturing temporal shifts in vegetation cover and density. The GIS-based Multi-Criteria Decision Analysis (MCDA) was employed to model the suitability of the reserve for livestock grazing. The results showed higher salinity, total dissolved solids (TDSs), and nitrate (NO3) values in April. However, the percentage of organic matter increased from approximately 7% in April to over 15% in November. The dry forage productivity ranged from 111 to 964 kg/ha/year. On average, the reserve’s dry yield was 395 kg/ha/year, suggesting moderate productivity typical of steppe rangelands in this region. The time-series NDVI analyses showed significant fluctuations in vegetation cover, with lower NDVI values prevailing in 2016 and 2018, and higher values estimated in 2019 and 2020. The grazing suitability analysis showed that 13.8% of the range reserve was highly suitable, while 24.4% was moderately suitable. These findings underscore the importance of tailoring grazing practices to enhance forage availability and ecological resilience in steppe rangelands. By integrating satellite-derived metrics with in situ vegetation and soil measurements, this study provides a replicable methodological framework for assessing and monitoring rangelands in semi-arid regions. Full article
Show Figures

Figure 1

22 pages, 8684 KB  
Article
Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru
by Angel J. Medina-Medina, Samuel Pizarro, Katerin M. Tuesta-Trauco, Jhon A. Zabaleta-Santisteban, Abner S. Rivera-Fernandez, Jhonsy O. Silva-López, Rolando Salas López, Renzo E. Terrones Murga, José A. Sánchez-Vega, Teodoro B. Silva-Melendez, Manuel Oliva-Cruz, Elgar Barboza and Alexander Cotrina-Sanchez
Sustainability 2025, 17(21), 9745; https://doi.org/10.3390/su17219745 (registering DOI) - 31 Oct 2025
Abstract
Accurate estimation of aboveground biomass (AGB) is essential for monitoring forage availability and guiding sustainable management in high-altitude pastures, where grazing sustains livelihoods but also drives ecological degradation. Although remote sensing has advanced biomass modeling in rangelands, applications in Andean–Amazonian ecosystems remain limited, [...] Read more.
Accurate estimation of aboveground biomass (AGB) is essential for monitoring forage availability and guiding sustainable management in high-altitude pastures, where grazing sustains livelihoods but also drives ecological degradation. Although remote sensing has advanced biomass modeling in rangelands, applications in Andean–Amazonian ecosystems remain limited, particularly using UAV-based structural and spectral data. This study evaluated the potential of UAV LiDAR and multispectral imagery to estimate fresh and dry AGB in ryegrass (Lolium multiflorum Lam.) pastures of Amazonas, Peru. Field data were collected from subplots within 13 plots across two sites (Atuen and Molinopampa) and modeled using Random Forest (RF), Support Vector Machines, and Elastic Net. AGB maps were generated at 0.2 m and 1 m resolutions. Results revealed clear site- and month-specific contrasts, with Atuen yielding higher AGB than Molinopampa, linked to differences in climate, topography, and grazing intensity. RF achieved the best accuracy, with chlorophyll-sensitive indices dominating fresh biomass estimation, while LiDAR-derived height metrics contributed more to dry biomass prediction. Predicted maps captured grazing-induced heterogeneity at fine scales, while aggregated products retained broader gradients. Overall, this study shows the feasibility of UAV-based multi-sensor integration for biomass monitoring and supports adaptive grazing strategies for sustainable management in Andean–Amazonian ecosystems. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
18 pages, 953 KB  
Article
Comparative Environmental Insights into Additive Manufacturing in Sand Casting and Investment Casting: Pathways to Net-Zero Manufacturing
by Alok Yadav, Rajiv Kumar Garg, Anish Sachdeva, Karishma M. Qureshi, Mohamed Rafik Noor Mohamed Qureshi and Muhammad Musa Al-Qahtani
Sustainability 2025, 17(21), 9709; https://doi.org/10.3390/su17219709 (registering DOI) - 31 Oct 2025
Abstract
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand [...] Read more.
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand casting (AM-SC) and AM-assisted investment casting (AM-IC), for Al-Si5-Cu3 alloy as a case material, under various energy scenarios including a conventional grid mix and renewable sources (wind, solar, hydro, and biomass). This study compares multiple environmental impact categories based on the CML 2001 methodology. The outcomes show that AM-SC consistently outperforms AM-IC in most impact categories. Under the grid mix scenario, AM-SC achieves 31.57% lower GWP, 19.28% lower AP, and 21.15% lower EP compared to AM-IC. AM-SC exhibits a 90.5% reduction in “Terrestrial Ecotoxicity Potential” and 75.73% in “Marine Ecotoxicity Potential”. Wind energy delivers the most significant emission reduction across both processes, reducing GWP by up to 98.3%, while AM-IC performs slightly better in HTP. These outcomes of the study offer site-specific empirical insights that support strategic decision-making for process selection and energy optimisation in casting. By quantifying environmental trade-offs aligned with India’s current energy mix and future renewable targets, the study provides a practical benchmark for tracking incremental gains toward the NZE goal. This work followed international standards (ISO 14040 and 14044), and the data were validated with both foundry records and field measurements; this study ensures reliable methods. The findings provide practical applications for making sustainable choices in the manufacturing process and show that the AM-assisted conventional manufacturing process is a promising route toward net-zero goals. Full article
Show Figures

Figure 1

27 pages, 2786 KB  
Article
Pyrolysis of Foliage from 24 U.S. Plant Species with Recommendations for Physics-Based Wildland Fire Models
by Mahsa Alizadeh and Thomas H. Fletcher
Fire 2025, 8(11), 424; https://doi.org/10.3390/fire8110424 (registering DOI) - 31 Oct 2025
Viewed by 8
Abstract
Pyrolysis of 24 samples of foliage from three U.S. regions with frequent wildland fires (Southeastern U.S., northern Utah and Southern California) was studied in a fuel-rich flat-flame burner system at 765 °C (for Southeastern U.S. samples) and 725 °C (for northern Utah and [...] Read more.
Pyrolysis of 24 samples of foliage from three U.S. regions with frequent wildland fires (Southeastern U.S., northern Utah and Southern California) was studied in a fuel-rich flat-flame burner system at 765 °C (for Southeastern U.S. samples) and 725 °C (for northern Utah and Southern California species), with a heating rate of approximately 180 °C/s. These conditions were selected to mimic the conditions of wildland fires. Individual plant samples were introduced to the high temperature zone in a flat-flame burner and pyrolysis products were collected. Tar was extracted and later analyzed by GC/MS. Light gases were collected and analyzed by GC/TCD. The estimated range for the average yields of tar and light gases were 48 to 62 wt% and 18 to 31 wt%, respectively. Apart from Eastwood’s manzanita (Arctostaphylos glandulosa Eastw.), aromatics were the major constituents of tar. The variations in the concentrations of tar compounds likely resulted from differences in biomass composition and physical characteristics of the foliage. The four major components of light gases from pyrolysis (wt% basis) were CO, CO2, CH4 and H2. Tar contributed more than 82% of the high heating value of volatiles. These data can be used to improve physical-based fire propagation models. Full article
(This article belongs to the Special Issue Pyrolysis, Ignition and Combustion of Solid Fuels)
Show Figures

Graphical abstract

22 pages, 4005 KB  
Article
Foliar Application of Ca-Based Fertilizers (Conventional vs. Nanofertilizers): Effects on Fruit Traits, Seed Quality Parameters and Initial Plant Growth of Tomato Genotypes
by Srđan Zec, Gordana Tamindžić, Sergei Azizbekian, Maja Ignjatov, Dario Danojević, Janko Červenski, Slobodan Vlajić, Đorđe Vojnović and Borislav Banjac
Horticulturae 2025, 11(11), 1303; https://doi.org/10.3390/horticulturae11111303 (registering DOI) - 31 Oct 2025
Viewed by 30
Abstract
This study evaluated the effects of foliar-applied calcium-based fertilizers, including a conventional fertilizer (T1) and a nanofertilizer containing Ca, Si, B, and Fe (T2), on fruit traits, seed quality, and early seedling growth of seven determinate tomato genotypes. Field-grown plants were monitored for [...] Read more.
This study evaluated the effects of foliar-applied calcium-based fertilizers, including a conventional fertilizer (T1) and a nanofertilizer containing Ca, Si, B, and Fe (T2), on fruit traits, seed quality, and early seedling growth of seven determinate tomato genotypes. Field-grown plants were monitored for fruit traits, while seeds underwent germination tests and seedling growth assessments under controlled laboratory conditions. Factorial ANOVA showed significant effects of genotype, treatment, and their interaction on fruit weight, width, germination energy, final germination, seedling vigor index, and initial plant growth, indicating genotype-specific responses. Treatment T2 significantly increased fruit weight and width, germination energy, final germination, seedling vigor, root length, and biomass compared to T1 and control (T0), while shoot elongation rate remained unaffected. Total soluble solids decreased under both treatments, but fruit length, pericarp thickness, and locule number were mainly genetically determined. Principal Component Analysis highlighted differentiation among treatments and correlations among key traits. The enhanced performance under T2 likely results from the synergistic effects of Ca, Si, B, and Fe, improving nutrient uptake and physiological activity. These findings suggest that foliar nanofertilizer application is a promising approach to optimize tomato yield and seedling performance. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 5671 KB  
Article
Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning
by Ritu Su, Yong Yang, Shujuan Chang, Gudamu A, Xiangjun Yun, Xiangyang Song and Aijun Liu
Agronomy 2025, 15(11), 2537; https://doi.org/10.3390/agronomy15112537 (registering DOI) - 31 Oct 2025
Viewed by 58
Abstract
Accurately quantifying grazing intensity (GI) is crucial for assessing grassland utilization and supporting sustainable management. Traditional livestock-based approaches cannot capture the spatial heterogeneity of grazing or its dynamic response to climate variability. The objective of this study was to develop a remote sensing-based [...] Read more.
Accurately quantifying grazing intensity (GI) is crucial for assessing grassland utilization and supporting sustainable management. Traditional livestock-based approaches cannot capture the spatial heterogeneity of grazing or its dynamic response to climate variability. The objective of this study was to develop a remote sensing-based quantitative framework for estimating GI across the Inner Mongolian grasslands. The framework integrates MODIS vegetation indices, ERA5-Land climate variables, topographic factors, and field-measured data and GI was quantified as the proportional difference between potential and satellite-derived aboveground biomass (AGB), providing a spatially explicit measure of forage utilization. In this framework, potential AGB (AGBp) represents the climate-driven growth capacity under ungrazed conditions reconstructed using machine learning models, whereas satellite-derived AGB (AGBs) denotes the standing AGB remaining under current grazing pressure. Validation using 324 paired grazed–ungrazed plots demonstrated strong agreement between modeled and observed GI (R2 = 0.65, RMSE = 0.18). This AGB-difference-based approach provides an effective and scalable tool for large-scale rangeland monitoring, offering quantitative insights into grass–livestock balance, ecological restoration, and adaptive management in arid and semi-arid regions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 15753 KB  
Article
A Novel Canopy Height Mapping Method Based on UNet++ Deep Neural Network and GEDI, Sentinel-1, Sentinel-2 Data
by Xingsheng Deng, Xu Zhu, Zhongan Tang and Yangsheng You
Forests 2025, 16(11), 1663; https://doi.org/10.3390/f16111663 (registering DOI) - 30 Oct 2025
Viewed by 80
Abstract
As a vital carbon reservoir in terrestrial ecosystems, forest canopy height plays a pivotal role in determining the precision of biomass estimation and carbon storage calculations. Acquiring an accurate Canopy Height Map (CHM) is crucial for building carbon budget models at regional and [...] Read more.
As a vital carbon reservoir in terrestrial ecosystems, forest canopy height plays a pivotal role in determining the precision of biomass estimation and carbon storage calculations. Acquiring an accurate Canopy Height Map (CHM) is crucial for building carbon budget models at regional and global scales. A novel UNet++ deep-learning model was constructed using Sentinel-1 and Sentinel-2 multispectral remote sensing images to estimate forest canopy height data based on full-waveform LiDAR measurements from the Global Ecosystem Dynamics Investigation (GEDI) satellite. A 10 m resolution CHM was generated for Chaling County, China. The model was evaluated using independent validation samples, achieving an R2 of 0.58 and a Root Mean Square Error (RMSE) of 3.38 m. The relationships between multiple Relative Height (RH) metrics and field validation data are examined. It was found that RH98 showed the strongest correlation, with an R2 of 0.56 and RMSE of 5.83 m. Six different preprocessing algorithms for GEDI data were evaluated, and the results demonstrated that RH98 processed using the ‘a1’ algorithm achieved the best agreement with the validation data, yielding an R2 of 0.55 and RMSE of 5.54 m. The impacts of vegetation coverage, assessed through Normalized Difference Vegetation Index (NDVI), and terrain slope on inversion accuracy are explored. The highest accuracy was observed in areas where NDVI ranged from 0.25 to 0.50 (R2 = 0.77, RMSE = 2.27 m) and in regions with slopes between 0° and 10° (R2 = 0.61, RMSE = 2.99 m). These results highlight that the selection of GEDI data preprocessing methods, RH metrics, vegetation density, and terrain characteristics (slope) all have significant impacts on the accuracy of canopy height estimation. Full article
(This article belongs to the Special Issue Applications of LiDAR and Photogrammetry for Forests)
Show Figures

Figure 1

Back to TopTop