Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = braconid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3229 KB  
Article
Fruit Flies (Diptera: Tephritidae) in Minas Gerais, Brazil: Trophic Interactions and New Reports
by Rosamara Souza Coelho, Clarice Alvarenga, Marvin Pec, Ana Luisa Rodrigues-Silva, Pedro Maranha Peche, Emanoel Alves and Rosangela Marucci
Insects 2025, 16(1), 17; https://doi.org/10.3390/insects16010017 - 28 Dec 2024
Cited by 1 | Viewed by 1297
Abstract
A diverse orchard with fruit fly hosts may provide information about trophic relationships, including new insights into beneficial insects. We evaluated the composition of the fruit fly complex to provide information on tephritid species, parasitoids and multitrophic interactions for the southern region of [...] Read more.
A diverse orchard with fruit fly hosts may provide information about trophic relationships, including new insights into beneficial insects. We evaluated the composition of the fruit fly complex to provide information on tephritid species, parasitoids and multitrophic interactions for the southern region of Minas Gerais, Brazil. Sampling was carried out using traps and by collecting fruits from plants and/or the ground according to availability/the fruiting period. Occurrences of Anastrepha amita Zucchi and A. punctata Hendel were recorded for the first time in the state of Minas Gerais, and new trophic associations were obtained for A. bahiensis Lima, A. bistrigata Bezzi, A. fraterculus (Wiedemann), A. obliqua (Macquart) and Ceratitis capitata (Wiedemann). Ten tephritid species were obtained from trap sampling, with C. capitata, A. fraterculus and A. obliqua being the most abundant. Five species of fruit flies and seven species of parasitoids were obtained from fruits. The braconid Doryctobracon areolatus (Szépligeti) was the most frequently collected among the parasitoid species. Pitanga (Eugenia uniflora L.) and purple guava (Psidium myrtoides O. Berg) fruits were classified as repositories of fruit fly parasitoids. Full article
Show Figures

Figure 1

41 pages, 10663 KB  
Article
Forty-Five Years of Caterpillar Rearing in Area de Conservación Guanacaste (ACG) Northwestern Costa Rica: DNA Barcodes, BINs, and a First Description of Plant–Caterpillar–Ichneumonoid Interactions Detected
by Donald L. J. Quicke, Daniel H. Janzen, Winnie Hallwachs, Mike J. Sharkey, Paul D. N. Hebert and Buntika A. Butcher
Diversity 2024, 16(11), 683; https://doi.org/10.3390/d16110683 - 7 Nov 2024
Cited by 5 | Viewed by 3756
Abstract
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their [...] Read more.
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their associations with larval food plants and parasitoids in a diverse tropical community. A total of 457,816 caterpillars developed into a moth or butterfly, and these were identified to the family and species/morphospecies, with 151,316 having been successfully barcoded and assigned a Barcode Index Number (BIN) and/or “scientific name”. The host food plant was usually identified to the species or morphospecies. In addition to adult moths and butterflies, rearings also yielded many hundreds of species of parasitic wasps and tachinid flies, many of which were also DNA-barcoded and assigned a name and/or BIN. Increasingly over recent years, these have been identified or described by expert taxonomists. Here, we provide a summary of the number of species of ichneumonoid (Ichneumonidae and Braconidae) parasitoids of the caterpillars, their hosts, the host food plants involved, the bi- and tritrophic interactions, and their relationships to the caterpillar sampling effort. The dataset includes 16,133 and 9453 independent rearings of Braconidae and Ichneumonidae, respectively, collectively representing 31 subfamilies, all with parasitoid barcodes and host and host food plant species-level identifications. Host caterpillars collectively represented 2456 species, which, in turn, were collectively eating 1352 species of food plants. Species accumulation curves over time for parasitoids, hosts, and plants show various asymptotic trends. However, no asymptotic trends were detected for numbers of unique parasitoid–host and host–plant bitrophic interactions, nor for tritrophic interactions, after 1983, because climate change then began to conspicuously reduce caterpillar densities. Parasitoid host ranges, the proportions of specialists at the host species and host genus levels, host family utilisation, and host guild sizes show some differences among taxa and are discussed in turn. Ichneumonidae are shown to preferentially parasitise caterpillars of larger-bodied hosts compared to Braconidae. Several of the host plant species from which caterpillars were collected have been introduced from outside of the Americas and their utilisation by endemic parasitoids is described. The obligately hyperparasitoid ichneumonid subfamily Mesochorinae is dealt with separately and its strong association with microgastrine braconid primary parasitoids is illustrated. We discuss the implications for studies of tropical insect community food web ecology and make suggestions for future work. The aim was to make available the data from this remarkable study and to provide an overview of what we think are some of the more interesting relationships that emerge—other scientists/readers are expected to have different questions that they will go on to explore the data to answer. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 3075 KB  
Article
The Belowground–Aboveground Interactions of Zucchini: The Effects of Trichoderma afroharzianum Strain T22 on the Population and Behavior of the Aphid Aphis gossypii Glover and Its Endoparasitoid Aphidius colemani Viereck
by Donatella Battaglia, Stefania Mirela Mang, Vittoria Caccavo, Paolo Fanti and Pierluigi Forlano
Insects 2024, 15(9), 690; https://doi.org/10.3390/insects15090690 - 12 Sep 2024
Cited by 3 | Viewed by 1648
Abstract
Fungi belonging to the genus Trichoderma have received high consideration in agriculture due to their beneficial effects on crops from their plant promotion effects and protection from disease. A role of Trichoderma fungi in triggering plant defense mechanisms against insect pests, either directly [...] Read more.
Fungi belonging to the genus Trichoderma have received high consideration in agriculture due to their beneficial effects on crops from their plant promotion effects and protection from disease. A role of Trichoderma fungi in triggering plant defense mechanisms against insect pests, either directly or by natural enemy attraction, has been proposed, even if the results in different studies are controversial. In this present study, using zucchini plants as a model species, we investigated the effects of Trichoderma afroharzianum strain T22 plant inoculation on the cotton aphid Aphis gossypii and its endoparasitoid Aphidius colemani. Our results showed that the inoculation with T. afroharzianum T22 promotes A. gossypii population growth and makes zucchini more attractive to the aphid. The higher abundance of aphids on Trichoderma-inoculated zucchini was compensated for by a higher presence of the mummies of Aphidius colemani. In this present study, we recorded a higher zucchini biomass, thereby confirming that Trichoderma can act as a plant growth inducer. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

9 pages, 4675 KB  
Communication
The Braconid Syntretomorpha szaboi Papp Is Posing a Great Threat to the Eastern Honeybee, Apis cerana
by Yanling Xie, Xiaoling Su, Ruike Wei, Lianfei Cao and Huoqing Zheng
Pathogens 2024, 13(5), 422; https://doi.org/10.3390/pathogens13050422 - 17 May 2024
Cited by 1 | Viewed by 1514
Abstract
The expansion of pathogen distribution may result in a new threat to the host. The braconid Syntretomorpha szaboi Papp is an obligate parasite that targets Apis cerana, the Eastern honeybee, engaging in endoparasitism by ovipositing eggs inside the host bee. Although S. [...] Read more.
The expansion of pathogen distribution may result in a new threat to the host. The braconid Syntretomorpha szaboi Papp is an obligate parasite that targets Apis cerana, the Eastern honeybee, engaging in endoparasitism by ovipositing eggs inside the host bee. Although S. szaboi has been documented in India and in various regions across China, its epidemiological data are notably lacking. In this study, we summarized the distribution of S. szaboi based on the available literature and described the symptoms of infested honeybee workers. We also investigated the infestation rate in 36 apiaries in Zhejiang Province, China, after a new occurrence of the parasite was reported in these regions in 2020. A rapid increase in infestation rate was found from the year 2021 to 2022, reaching 53.88% at the colony level of the sampled colonies in the Jinhua and Wenzhou apiaries. The infestation rate at an individual level in positive colonies reached an average of 26%. A monthly survey showed high seasonal variation in S. szaboi infestation, with the peak occurring from May to August. These results suggest that S. szaboi poses a great threat to A. cerana. Further research is needed to elucidate its epidemiology and pathology and to develop disease prevention and control strategies. Full article
Show Figures

Figure 1

40 pages, 17749 KB  
Article
The Diversity of Parasitoids and Their Role in the Control of the Siberian Moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), a Major Coniferous Pest in Northern Asia
by Natalia I. Kirichenko, Alexander A. Ageev, Sergey A. Astapenko, Anna N. Golovina, Dmitry R. Kasparyan, Oksana V. Kosheleva, Alexander V. Timokhov, Ekaterina V. Tselikh, Evgeny V. Zakharov, Dmitrii L. Musolin and Sergey A. Belokobylskij
Life 2024, 14(2), 268; https://doi.org/10.3390/life14020268 - 17 Feb 2024
Cited by 2 | Viewed by 3193
Abstract
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this [...] Read more.
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905–2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940–2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest. Full article
(This article belongs to the Special Issue Feature Papers in Animal Science: 2nd Edition)
Show Figures

Figure 1

10 pages, 279 KB  
Article
Estimating the Cost of Production of Two Pentatomids and One Braconid for the Biocontrol of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Maize Fields in Florida
by Jermaine D. Perier, Muhammad Haseeb, Daniel Solís, Lambert H. B. Kanga and Jesusa C. Legaspi
Insects 2023, 14(2), 169; https://doi.org/10.3390/insects14020169 - 9 Feb 2023
Viewed by 2953
Abstract
The fall armyworm is a polyphagous lepidopteran pest that primarily feeds on valuable global crops like maize. Insecticides and transgenic crops have long been a primary option for fall armyworm control, despite growing concerns about transgenic crop resistance inheritance and the rate of [...] Read more.
The fall armyworm is a polyphagous lepidopteran pest that primarily feeds on valuable global crops like maize. Insecticides and transgenic crops have long been a primary option for fall armyworm control, despite growing concerns about transgenic crop resistance inheritance and the rate of insecticide resistance development. Global dissemination of the pest species has highlighted the need for more sustainable approaches to managing overwhelming populations both in their native range and newly introduced regions. As such, integrated pest management programs require more information on natural enemies of the species to make informed planning choices. In this study, we present a cost analysis of the production of three biocontrol agents of the fall armyworm over a year. This model is malleable and aimed towards small-scale growers who might benefit more from an augmentative release of natural enemies than a repetitive use of insecticides, especially since, though the benefits of using either are similar, the biological control option has a lower development cost and is more environmentally sustainable. Full article
(This article belongs to the Special Issue Recent Advances in Fall Armyworm Research)
8 pages, 281 KB  
Communication
Viriforms—A New Category of Classifiable Virus-Derived Genetic Elements
by Jens H. Kuhn and Eugene V. Koonin
Biomolecules 2023, 13(2), 289; https://doi.org/10.3390/biom13020289 - 3 Feb 2023
Cited by 10 | Viewed by 4560
Abstract
The International Committee on Taxonomy of Viruses (ICTV) recently accepted viriforms as a new polyphyletic category of classifiable virus-derived genetic elements, juxtaposed to the polyphyletic virus, viroid, and satellite nucleic acid categories. Viriforms are endogenized former viruses that have been exapted by their [...] Read more.
The International Committee on Taxonomy of Viruses (ICTV) recently accepted viriforms as a new polyphyletic category of classifiable virus-derived genetic elements, juxtaposed to the polyphyletic virus, viroid, and satellite nucleic acid categories. Viriforms are endogenized former viruses that have been exapted by their cellular hosts to fulfill functions important for the host’s life cycle. While morphologically resembling virions, particles made by viriforms do not package the viriform genomes but instead transport host genetic material. Known viriforms are highly diverse: members of family Polydnaviriformidae (former Polydnaviridae) have thus far been found exclusively in the genomes of braconid and ichneumonid parasitoid wasps, whereas the completely unrelated gene transfer agents (GTAs) are widely distributed among prokaryotes. In addition, recent discoveries likely extend viriforms to mammalian genomes. Here, we briefly outline the properties of these viriform groups and the first accepted and proposed ICTV frameworks for viriform classification. Full article
14 pages, 1516 KB  
Article
Diversity of Hymenopteran Parasitoids in Coffee Plantations under Agroecological Transition and Its Impact on Coffee Leaf Miner (Leucoptera coffeella) Infestations
by Kulian Basil Santa Cecília Marques, Lêda Gonçalves Fernandes, Ludmila Caproni Morais, Khalid Haddi and Luís Cláudio Paterno Silveira
Diversity 2023, 15(1), 2; https://doi.org/10.3390/d15010002 - 20 Dec 2022
Cited by 6 | Viewed by 2707
Abstract
The biodiversity of natural competitors is vital to key ecosystem services and agroecosystems’ benefits to society. The abundance and richness of hymenopteran parasitoid communities, and subsequently their services, are dependent on the variety of habitats in the different agroecological landscapes. Here, we monitored [...] Read more.
The biodiversity of natural competitors is vital to key ecosystem services and agroecosystems’ benefits to society. The abundance and richness of hymenopteran parasitoid communities, and subsequently their services, are dependent on the variety of habitats in the different agroecological landscapes. Here, we monitored the fluctuation of predatory wasps and hymenopteran parasitoid populations and their impacts on coffee leaf miner infestations under different coffee plantation landscapes. Thus, 24 sampling plots were arranged in four cultivation systems: conventional (CONV), in transition to organic shaded (T.OSH), in transition to organic full-sun (T.OFS), and without pesticide (T.WOP). In each plot, leaves with intact mines were collected randomly once a month over a period of 23 months. Parasitoid species, coffee leaf miner infestation, predation, and parasitism were assessed based on the emerged parasitoids and wasps’ activity signs in the mines. The data on parasitoids revealed the presence of 621 hymenopteran parasitoids, of which, 420 were Braconids and 201 were Eulophids. Overall, the abundance of braconid specimens (67.6%) was greater, but the species richness was higher in Eulophids. The highest species richness of L. coffeella parasitoids was in T.OSH and T.OFS. Furthermore, in the coffee plants evaluated, the coffee leaf miner population is well established and does not cause economic damage, as the spontaneous action of predatory wasps and parasitoids, in addition to climatic factors, contributes to regulating these pest infestations. Of these parasitoids, the braconid Orgilus niger and Stiropius reticulatus were found to be promising and well-adapted control provider species. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Evolution of Insects)
Show Figures

Graphical abstract

16 pages, 1658 KB  
Article
Insect Feeding on Sorghum bicolor Pollen and Hymenoptera Attraction to Aphid-Produced Honeydew
by Karen R. Harris-Shultz, John Scott Armstrong, Michael Caballero, William Wyatt Hoback and Joseph E. Knoll
Insects 2022, 13(12), 1152; https://doi.org/10.3390/insects13121152 - 14 Dec 2022
Cited by 8 | Viewed by 4410
Abstract
Pollinators are declining globally, potentially reducing both human food supply and plant diversity. To support pollinator populations, planting of nectar-rich plants with different flowering seasons is encouraged while promoting wind-pollinated plants, including grasses, is rarely recommended. However, many bees and other pollinators collect [...] Read more.
Pollinators are declining globally, potentially reducing both human food supply and plant diversity. To support pollinator populations, planting of nectar-rich plants with different flowering seasons is encouraged while promoting wind-pollinated plants, including grasses, is rarely recommended. However, many bees and other pollinators collect pollen from grasses which is used as a protein source. In addition to pollen, Hymenoptera may also collect honeydew from plants infested with aphids. In this study, insects consuming or collecting pollen from sweet sorghum, Sorghum bicolor, were recorded while pan traps and yellow sticky card surveys were placed in grain sorghum fields and in areas with Johnsongrass, Sorghum halepense to assess the Hymenoptera response to honeydew excreted by the sorghum aphid (SA), Melanaphis sorghi. Five genera of insects, including bees, hoverflies, and earwigs, were observed feeding on pollen in sweet sorghum, with differences observed by date, but not plant height or panicle length. Nearly 2000 Hymenoptera belonging to 29 families were collected from grain sorghum with 84% associated with aphid infestations. About 4 times as many Hymenoptera were collected in SA infested sorghum with significantly more ants, halictid bees, scelionid, sphecid, encyrtid, mymarid, diapriid and braconid wasps were found in infested sorghum plots. In Johnsongrass plots, 20 times more Hymenoptera were collected from infested plots. Together, the data suggest that sorghum is serving as a pollen food source for hoverflies, earwigs, and bees and sorghum susceptible to SA could provide energy from honeydew. Future research should examine whether planting strips of susceptible sorghum at crop field edges would benefit Hymenoptera and pollinators. Full article
Show Figures

Figure 1

13 pages, 1134 KB  
Article
Effect of Pupal Cold Storage on Reproductive Performance of Microplitis manilae (Hymenoptera: Braconidae), a Larval Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Binglin Xing, Lei Yang, Ahamaijiang Gulinuer, Fen Li and Shaoying Wu
Insects 2022, 13(5), 449; https://doi.org/10.3390/insects13050449 - 9 May 2022
Cited by 17 | Viewed by 3247
Abstract
As a major invasive pest in China, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) has caused great damage to crops. Hymenopteran parasitoids, especially the braconid wasps, play crucial roles in depressing pest populations. However, there was little information about the ideal storage of parasitoids to [...] Read more.
As a major invasive pest in China, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) has caused great damage to crops. Hymenopteran parasitoids, especially the braconid wasps, play crucial roles in depressing pest populations. However, there was little information about the ideal storage of parasitoids to achieve their mass-rearing. Here, we identified a dominant parasitoid of S. frugiperda, Microplitis manilae (Ashmead) (Hymenoptera: Braconidae), in the Hainan province of China with a field parasitism rate of 5.66–19.10%. The investigation of biological parameters revealed that the parasitism rate of M. manilae significantly decreased with an increase in both wasp adult longevity and host age, and the wasp of 1–3 d post eclosion performed best on the first instar of host larvae, showing the highest parasitism rate. We also discovered that the decreased temperature from 30 to 20 °C greatly extended the longevity of wasp adults, and a similar result was observed after feeding on 10% sucrose water compared with sterile water. Then, the effects of different pupal cold storage temperatures (4 and 10 °C), storage period (prepupa, middle-aged pupa, late-aged pupa) and storage time (5, 10 or 20 d) on the emergence rate, parasitism rate, female proportion and longevity of M. manilae were investigated. The results demonstrated that the middle-aged wasp pupae stored at 10 °C for 5–10 d possessed a stronger parasitic ability and longer longevity. These findings may promote the flexibility and efficacy of large-scale production of M. manilae, thus contributing to its biological field control against S. frugiperda. Full article
(This article belongs to the Special Issue Environmentally-Friendly Pest Control Approaches for Invasive Insects)
Show Figures

Figure 1

9 pages, 897 KB  
Article
Volatiles from Cotton Plants Infested by Agrotis segetum (Lep.: Noctuidae) Attract the Larval Parasitoid Microplitis mediator (Hym.: Braconidae)
by Mengyu Li, Shike Xia, Tao Zhang, Livy Williams, Haijun Xiao and Yanhui Lu
Plants 2022, 11(7), 863; https://doi.org/10.3390/plants11070863 - 24 Mar 2022
Cited by 16 | Viewed by 3553
Abstract
Herbivore-induced plant volatiles (HIPVs), chemicals produced by plants infested by herbivorous insects, can act as kairomones that recruit natural enemies of the pest herbivore. Agrotis segetum (Denis and Schiffermüller) is a common, important pest of seedling cotton in Xinjiang Province, China, and the [...] Read more.
Herbivore-induced plant volatiles (HIPVs), chemicals produced by plants infested by herbivorous insects, can act as kairomones that recruit natural enemies of the pest herbivore. Agrotis segetum (Denis and Schiffermüller) is a common, important pest of seedling cotton in Xinjiang Province, China, and the braconid Microplitis mediator (Haliday) is an important mortality factor of this pest’s larvae. In olfactometer tests, which included healthy foliage, infested foliage, or infested roots, M. mediator preferred A. segetum-infested cotton plants to healthy cotton plants. In GC-MS analyses of plant-emitted volatiles, we found that compounds emitted increased 14.9- and 13.3- fold after leaf infestation and root infestation, respectively, compared to healthy control plants. The volatiles were mainly p-xylene, nonanal, tetradecane, decanal, benzaldehyde, β-caryophyllene, and humulene, while linalool was only present in the leaf-infestation treatment. In addition, principal component analysis indicated that all 18 compounds were associated with the infested plants, especially β-caryophyllene, p-xylene, and decanal. Based on the above studies and previous functional evaluations of the volatile compounds, it can be demonstrated that these compounds play a crucial role in modulating the interactions between A. segetum and M. mediator and regulating parasitoid behavior. It may be possible to enhance the biological control of A. segetum by M. mediator through the application of HIPVs. Full article
(This article belongs to the Special Issue Advances in Induced Plant Defense and Biological Control)
Show Figures

Figure 1

12 pages, 8135 KB  
Article
Can the Combined Use of the Mirid Predator Nesidiocoris tenuis and a Braconid Larval Endoparasitoid Dolichogenidea gelechiidivoris Improve the Biological Control of Tuta absoluta?
by Pascal Osa Aigbedion-Atalor, Martin P. Hill, Pascal Mahukpe Ayelo, Shepard Ndlela, Myron P. Zalucki and Samira A. Mohamed
Insects 2021, 12(11), 1004; https://doi.org/10.3390/insects12111004 - 8 Nov 2021
Cited by 12 | Viewed by 3840
Abstract
The koinobiont solitary larval endoparasitoid Dolichogenidea gelechiidivoris (Marsh) (Syn.: Apanteles gelechiidivoris) (Hymenoptera: Braconidae) and the predatory bug Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) are important natural enemies of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a serious pest of tomato. Although N. tenuis preferentially feeds [...] Read more.
The koinobiont solitary larval endoparasitoid Dolichogenidea gelechiidivoris (Marsh) (Syn.: Apanteles gelechiidivoris) (Hymenoptera: Braconidae) and the predatory bug Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) are important natural enemies of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a serious pest of tomato. Although N. tenuis preferentially feeds on T.absoluta eggs, it is also recorded as a predator of first and second instar larval stages. Dolichogenidea gelechiidivoris preferentially seeks these early larval stages of T. absoluta for oviposition. The occurrence of intraguild predation between N. tenuis and D. gelechiidivoris and the consequences on the oviposition performance of D. gelechiidivoris were investigated in the laboratory. Regardless of the manner of introduction (i.e., the sequence of combinations with D. gelechiidivoris) or density (i.e., number of N. tenuis combined with D. gelechiidivoris), the presence of N. tenuis did not affect the oviposition performance of D. gelechiidivoris or the parasitoid’s progeny. Combination assays revealed that the efficacy of the combined use of N. tenuis and D. gelechiidivoris in controlling T. absoluta populations was significantly higher than that of either natural enemy alone. Our results highlight the potential of combining mirid predators and koinobiont larval endoparasitoids to control T. absoluta. The findings further contribute to data supporting the release of D. gelechiidivoris in tomato agroecosystems for the control of T. absoluta in Africa, where N. tenuis is widespread and abundant. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

8 pages, 1797 KB  
Article
Echoentomography for Assessing Braconid Parasitization on Soft-Bodied Tephritid Hosts
by Renato Ricciardi, Rossana Izzetti, Marco Romanelli, Davide Caramella, Andrea Lucchi and Giovanni Benelli
Insects 2021, 12(11), 980; https://doi.org/10.3390/insects12110980 - 29 Oct 2021
Viewed by 3204
Abstract
Entomological approaches currently available for assessing host parasitization require dissection, polymerase chain reaction (PCR), or waiting for adult emergence. The first two methods are relatively fast but destructive, whereas the third one allows the emergence of the parasitoid but it is time consuming. [...] Read more.
Entomological approaches currently available for assessing host parasitization require dissection, polymerase chain reaction (PCR), or waiting for adult emergence. The first two methods are relatively fast but destructive, whereas the third one allows the emergence of the parasitoid but it is time consuming. In this framework, new diagnostic imaging tools may contribute to solve the lack of an accurate, rapid, and non-invasive approach to evaluate the parasitization of soft-bodied insects by their endoparasitoids. In this study, ultra-high frequency ultrasound (UHFUS) technology, which is currently used in medical and preclinical fields, was adopted to assess the parasitization of the invasive polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), testing 2nd and 3rd instar larvae. Parasitization assays were carried out with the solitary koinobiont endophagous parasitoid Psyttalia concolor (Hymenoptera: Braconidae: Opiinae). The efficacy of UHFUS-based echoentomography was compared with the classical method of dissecting the larval host under a stereomicroscope. Our results showed that the UHFUS diagnostic capability was statistically comparable with that of dissection, both on C. capitata 2nd and 3rd larvae. Overall, UHFUS-based echoentomography may be further considered as a fast, non-invasive, and effective approach to evaluate the parasitoid’s ability to successfully oviposit in soft-bodied hosts. Full article
(This article belongs to the Special Issue Novel Findings in Insect Functional Morphology and Anatomy)
Show Figures

Figure 1

36 pages, 11448 KB  
Article
Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae)
by Jean-Luc Gatti, Maya Belghazi, Fabrice Legeai, Marc Ravallec, Marie Frayssinet, Stéphanie Robin, Djibril Aboubakar-Souna, Ramasamy Srinivasan, Manuele Tamò, Marylène Poirié and Anne-Nathalie Volkoff
Toxins 2021, 13(7), 502; https://doi.org/10.3390/toxins13070502 - 19 Jul 2021
Cited by 9 | Viewed by 5001
Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. [...] Read more.
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be “metalloproteinase bombs” that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified. Full article
(This article belongs to the Special Issue Evolution, Genomics and Proteomics of Venom)
Show Figures

Figure 1

7 pages, 233 KB  
Communication
Factors Affecting Thanatosis in the Braconid Parasitoid Wasp Heterospilus prosopidis
by Mio Amemiya and Kôji Sasakawa
Insects 2021, 12(1), 48; https://doi.org/10.3390/insects12010048 - 10 Jan 2021
Cited by 6 | Viewed by 2896
Abstract
Thanatosis, also called death feigning, is often an antipredator behavior. In insects, it has been reported from species of various orders, but knowledge of this behavior in Hymenoptera is insufficient. This study examined the effects of sex, age (0 or 2 days old), [...] Read more.
Thanatosis, also called death feigning, is often an antipredator behavior. In insects, it has been reported from species of various orders, but knowledge of this behavior in Hymenoptera is insufficient. This study examined the effects of sex, age (0 or 2 days old), temperature (18 or 25 °C), and background color (white, green, or brown) on thanatosis in the braconid parasitoid wasp Heterospilus prosopidis. Thanatosis was more frequent in 0-d-old individuals and in females at 18 °C. The duration of thanatosis was longer in females, but this effect of sex was weaker at 18 °C and in 0-d-old individuals. The background color affected neither the frequency nor duration. These results were compared with reports for other insects and predictions based on the life history of this species, and are discussed from an ecological perspective. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Back to TopTop