Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = brusatol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1483 KB  
Article
The Nrf2 Inhibitor Brusatol Promotes Human Osteosarcoma (MG63) Growth and Blocks EB1089-Induced Differentiation
by Emily Stephens, Alexander Greenhough and Jason P. Mansell
Int. J. Mol. Sci. 2025, 26(19), 9675; https://doi.org/10.3390/ijms26199675 - 3 Oct 2025
Viewed by 526
Abstract
Survival rates for those with metastatic osteosarcoma (OS) have not improved over the last four decades. It is imperative that novel approaches to treating and curing OS be sought. We, therefore, turned our attention to Brusatol (Bru), a naturally occurring Nrf2 inhibitor reported [...] Read more.
Survival rates for those with metastatic osteosarcoma (OS) have not improved over the last four decades. It is imperative that novel approaches to treating and curing OS be sought. We, therefore, turned our attention to Brusatol (Bru), a naturally occurring Nrf2 inhibitor reported to elicit anti-cancer effects in a multitude of tumour models. Importantly there is emerging evidence that Nrf2 is implicated in chemoradiotherapy resistance in OS and that inhibiting Nrf2 may represent a desirable route to treating OS. Surprisingly, using the human OS cell line, MG63, we actually found that Bru promoted cell growth. Compared to control, normoxic cultures, the application of Bru (50 nM) over 3 days led to an increase in cell number by approximately 1.7-fold. A similar outcome occurred for cells under hypoxic conditions, although the extent of cell growth was significantly less at around 1.3-fold. Furthermore, Bru prevented MG63 differentiation in response to co-treatment with the calcitriol analogue, EB1089, and the lipid growth factor, lysophosphatidic acid. The extent of inhibition was profound at approximately 2.8-fold. The application of the Nrf2 activator, dimethyl fumarate, did not rescue these phenotypes. Whilst Bru has shown promise in other cancer models, it would appear, from our findings, that this agent may not be suitable for the treatment of OS. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

27 pages, 827 KB  
Review
The Redox Paradox: Cancer’s Double-Edged Sword for Malignancy and Therapy
by Jyotsna Suresh Ranbhise, Manish Kumar Singh, Songhyun Ju, Sunhee Han, Hyeong Rok Yun, Sung Soo Kim and Insug Kang
Antioxidants 2025, 14(10), 1187; https://doi.org/10.3390/antiox14101187 - 28 Sep 2025
Viewed by 1072
Abstract
Reactive oxygen species (ROS) function as critical signaling molecules in cancer biology, promoting proliferation, angiogenesis, and metastasis at controlled levels while inducing lethal damage when exceeding the cell’s buffering capacity. To survive under this state of chronic oxidative stress, cancer cells become dependent [...] Read more.
Reactive oxygen species (ROS) function as critical signaling molecules in cancer biology, promoting proliferation, angiogenesis, and metastasis at controlled levels while inducing lethal damage when exceeding the cell’s buffering capacity. To survive under this state of chronic oxidative stress, cancer cells become dependent on a hyperactive antioxidant shield, primarily orchestrated by the Nrf2, glutathione (GSH), and thioredoxin (Trx) systems. These defenses maintain redox homeostasis and sustain oncogenic signaling, notably through the oxidative inactivation of tumor-suppressor phosphatases, such as PTEN, which drives the PI3K/AKT/mTOR pathway. Targeting this addiction to a rewired redox state has emerged as a compelling therapeutic strategy. Pro-oxidant therapies aim to overwhelm cellular defenses, with agents like high-dose vitamin C and arsenic trioxide (ATO) showing significant tumor-selective toxicity. Inhibiting the master regulator Nrf2 with compounds such as Brusatol or ML385 disrupts the core antioxidant response. Disruption of the GSH system by inhibiting cysteine uptake with sulfasalazine or erastin potently induces ferroptosis, a non-apoptotic cell death driven by lipid peroxidation. Furthermore, the thioredoxin system is targeted by the repurposed drug auranofin, which irreversibly inhibits thioredoxin reductase (TrxR). Extensive preclinical data and ongoing clinical trials support the concept that this reliance on redox adaptation is a cancer-selective vulnerability. Moreover, novel therapeutic strategies, including the expanding field of redox-active metal complexes, such as manganese porphyrins, which strategically leverage the differential redox state of normal versus cancer cells through both pro-oxidant and indirect Nrf2-mediated antioxidative mechanisms (triggered by Keap1 oxidation), with several agents currently in advanced clinical trials, have also been discussed. Essentially, pharmacologically tipping the redox balance beyond the threshold of tolerance offers a rational and powerful approach to eliminate malignant cells, defining a novel frontier for targeted cancer therapy. Full article
(This article belongs to the Special Issue Redox Signaling in Cancer: Mechanisms and Therapeutic Opportunities)
Show Figures

Figure 1

27 pages, 2779 KB  
Article
Cinnamic Acid: A Shield Against High-Fat-Diet-Induced Liver Injury—Exploring Nrf2’s Protective Mechanisms
by Asmahan Taher Alahdal, Laila Naif Al-Harbi, Ghedeir M. Alshammari, Ali Saleh and Mohammed Abdo Yahya
Int. J. Mol. Sci. 2025, 26(16), 7940; https://doi.org/10.3390/ijms26167940 - 17 Aug 2025
Cited by 1 | Viewed by 1018
Abstract
This study investigated the hepatoprotective effects of cinnamic acid (CA) against liver injury and fat accumulation induced by a high-fat diet (HFD), focusing on the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Male Wistar rats were divided into six [...] Read more.
This study investigated the hepatoprotective effects of cinnamic acid (CA) against liver injury and fat accumulation induced by a high-fat diet (HFD), focusing on the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Male Wistar rats were divided into six groups: a control group receiving carboxymethylcellulose; a CA control group (40 mg/kg); an HFD group; two HFD groups treated with CA (20 mg/kg or 40 mg/kg); and a HFD group co-treated with CA (40 mg/kg) and brusatol (2 mg/kg, i.p.), a selective Nrf2 inhibitor. CA was administered orally, and brusatol intraperitoneally, both twice per week for twelve weeks. CA had no effect on serum glucose or insulin but improved serum and hepatic profiles in HFD rats. It also attenuated liver vacuolization and normalized serum levels of ALT, AST, and γ-GT. CA also reduced hepatic apoptosis by increasing Bcl2 and reducing Bax and caspase-3 levels. CA mitigated oxidative stress by reducing MDA and enhancing SOD and GSH levels. It suppressed inflammatory mediators, including TNF-α, IL-6, and NF-κB. CA also downregulated SREBP1, FAS, ACC-1, and Keap1 while increasing mRNA and nuclear translocation of Nrf2. All these effects were dose-dependent. Similar molecular effects of CA were also seen in control rats while CA protection in HFD rats was abolished with brusatol indicating Nrf2-dependency. Such findings highlight CA as a promising nutraceutical candidate for preventing HFD-induced liver injury. Further studies are warranted to explore its clinical applicability in metabolic liver diseases. Full article
(This article belongs to the Special Issue Liver Diseases: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

21 pages, 9061 KB  
Article
Brusatol Inhibits Esophageal Squamous Cell Carcinoma Tumorigenesis Through Bad-Mediated Mitochondrial Apoptosis Induction and Anti-Metastasis by Targeting Akt1
by Yao Ji, Xinxin Zhu, Yi Shi, Rui Fang, Yimeng Sun, Yurong Ruan, Liying Zhou, Yuanyuan Ge, Qichao Luo, Junyan Zhang and Junting Ma
Biomolecules 2025, 15(6), 812; https://doi.org/10.3390/biom15060812 - 4 Jun 2025
Viewed by 907
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy characterized by poor prognosis and a deficiency of effective therapies. Brusatol (Bru), a bioactive component derived from Brucea javanica, exhibits potent anti-tumor activity. However, the pro-apoptotic and anti-metastatic effects of Bru in ESCC [...] Read more.
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy characterized by poor prognosis and a deficiency of effective therapies. Brusatol (Bru), a bioactive component derived from Brucea javanica, exhibits potent anti-tumor activity. However, the pro-apoptotic and anti-metastatic effects of Bru in ESCC remain unclear. ESCC cells were incubated with Bru. The apoptotic status and metastatic capacities of the cells was measured by the Annexin V-FITC/PI, and wound-healing and transwell assays. Potential targets of Bru in ESCC were identified. The mechanisms by which Bru exerts its effects in ESCC cells were explored. Additionally, the typical 4-NQO-induced ESCC mouse model was employed to examine the anti-tumor effect of Bru in vivo. In this study, Bru was found to trigger mitochondria-mediated cell apoptosis (approximately 5.9- and 3.3-fold increases in the level of apoptosis at high concentrations (80 nM) in the KYSE30 and KYSE450 cells) and inhibit metastasis (49% wound closure decreases at high concentrations (80 nM) in both cells, compared to that in the DMSO group) in ESCC cells. In vivo, Bru significantly suppressed ESCC tumorigenesis. Notably, Bru interacts with Akt1, leading to a reduction in the phosphorylation level of Akt1 at Ser473. Consequently, this not only induced dephosphorylation of Bad at the Ser136 residue to promote mitochondrial apoptosis but also inhibited metastasis in ESCC cells. Bru promoted Bad-mediated mitochondrial apoptosis and inhibited the ESCC cell metastasis by targeting Akt1. Our results suggest Bru is a novel Akt1 inhibitor for inhibiting the progression of ESCC. Full article
Show Figures

Figure 1

24 pages, 6262 KB  
Article
New Brusatol Derivatives as Anti-Settlement Agents Against Barnacles, Targeting HSP90: Design, Synthesis, Biological Evaluation, and Molecular Docking Investigations
by Wang Jiang, Tongtong Luan, Pei Cao, Zhonghui Ma and Zhiwei Su
Int. J. Mol. Sci. 2025, 26(2), 593; https://doi.org/10.3390/ijms26020593 - 12 Jan 2025
Cited by 1 | Viewed by 1523
Abstract
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized [...] Read more.
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity. Compound 3 exhibited the highest anti-settlement capacity, with an EC50 value of 0.1475 μg/mL, an LC50/EC50 ratio of 42.2922 (>15 indicating low toxicity), and a resuscitation rate of 71.11%, while it showed no significant phenotypic differences in the zebrafish embryos after treatment for 48 h. The toxicity screening of zebrafish also demonstrated the low ecotoxicity of the selected compounds. Furthermore, homology modeling of the HSP90 structure was performed based on related protein sequences in barnacles. Subsequently, molecular docking studies were conducted on HSP90 using these newly synthesized derivatives. Molecular docking analyses showed that most activated derivatives displayed low binding energies with HSP90, aligning well with the biological results. They were found to interact with key residues in the binding site, specifically ARG243, TYR101, and LEU73. These computational findings are anticipated to aid in predicting the enzyme targets of the tested inhibitors and their potential interactions, thus facilitating the design of novel antifoulants in future research endeavors. Full article
Show Figures

Graphical abstract

22 pages, 2055 KB  
Article
Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects
by Nuha Saad Alshareef, Sahar Abdulaziz AlSedairy, Laila Naif Al-Harbi, Ghedeir M. Alshammari and Mohammed Abdo Yahya
Antioxidants 2024, 13(9), 1098; https://doi.org/10.3390/antiox13091098 - 10 Sep 2024
Cited by 12 | Viewed by 3208
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats [...] Read more.
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects. Full article
(This article belongs to the Special Issue Natural Antioxidants and Metabolic Diseases)
Show Figures

Figure 1

16 pages, 4857 KB  
Article
Naturally Derived Terpenoids Targeting the 3Dpol of Foot-and-Mouth Disease Virus: An Integrated In Silico and In Vitro Investigation
by Natjira Mana, Sirin Theerawatanasirikul, Ploypailin Semkum and Porntippa Lekcharoensuk
Viruses 2024, 16(7), 1128; https://doi.org/10.3390/v16071128 - 14 Jul 2024
Cited by 3 | Viewed by 2217
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for [...] Read more.
Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37–0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein–ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents. Full article
(This article belongs to the Special Issue Novel Antiviral Targets against Emerging Viruses)
Show Figures

Figure 1

15 pages, 3333 KB  
Article
The Experimental and In Silico-Based Evaluation of NRF2 Modulators, Sulforaphane and Brusatol, on the Transcriptome of Immortalized Bovine Mammary Alveolar Cells
by Hunter R. Ford and Massimo Bionaz
Int. J. Mol. Sci. 2024, 25(8), 4264; https://doi.org/10.3390/ijms25084264 - 12 Apr 2024
Cited by 2 | Viewed by 1803
Abstract
Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the [...] Read more.
Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches. Full article
Show Figures

Figure 1

31 pages, 7021 KB  
Article
Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer
by Tayo Alex Adekiya, Madison Moore, Michael Thomas, Gabriel Lake, Tamaro Hudson and Simeon K. Adesina
Pharmaceutics 2024, 16(1), 114; https://doi.org/10.3390/pharmaceutics16010114 - 16 Jan 2024
Cited by 7 | Viewed by 3097
Abstract
Challenges to docetaxel use in prostate cancer treatment include several resistance mechanisms as well as toxicity. To overcome these challenges and to improve the therapeutic efficacy in heterogeneous prostate cancer, the use of multiple agents that can destroy different subpopulations of the tumor [...] Read more.
Challenges to docetaxel use in prostate cancer treatment include several resistance mechanisms as well as toxicity. To overcome these challenges and to improve the therapeutic efficacy in heterogeneous prostate cancer, the use of multiple agents that can destroy different subpopulations of the tumor is required. Brusatol, a multitarget inhibitor, has been shown to exhibit potent anticancer activity and play an important role in drug response and chemoresistance. Thus, the combination of brusatol and docetaxel in a nanoparticle platform for the treatment of prostate cancer is expected to produce synergistic effects. In this study, we reported the development of polymeric nanoparticles for the delivery of brusatol and docetaxel in the treatment of prostate cancer. The one-factor-at-a-time method was used to screen for formulation and process variables that impacted particle size. Subsequently, factors that had modifiable effects on particle size were evaluated using a 24 full factorial statistical experimental design followed by the optimization of drug loading. The optimization of blank nanoparticles gave a formulation with a mean size of 169.1 nm ± 4.8 nm, in agreement with the predicted size of 168.333 nm. Transmission electron microscopy showed smooth spherical nanoparticles. The drug release profile showed that the encapsulated drugs were released over 24 h. Combination index data showed a synergistic interaction between the drugs. Cell cycle analysis and the evaluation of caspase activity showed differences in PC-3 and LNCaP prostate cancer cell responses to the agents. Additionally, immunoblots showed differences in survivin expression in LNCaP cells after treatment with the different agents and formulations for 24 h and 72 h. Therefore, the nanoparticles are potentially suitable for the treatment of advanced prostate cancer. Full article
(This article belongs to the Special Issue Combination Therapeutic Delivery Systems)
Show Figures

Figure 1

20 pages, 5181 KB  
Article
Astrocytic Nrf2 Mediates the Neuroprotective and Anti-Inflammatory Effects of Nootkatone in an MPTP-Induced Parkinson’s Disease Mouse Model
by Jung-Eun Park, Yea-Hyun Leem, Jin-Sun Park, Seong-Eun Kim and Hee-Sun Kim
Antioxidants 2023, 12(11), 1999; https://doi.org/10.3390/antiox12111999 - 13 Nov 2023
Cited by 10 | Viewed by 3488
Abstract
This study aims to investigate the neuroprotective effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in an MPTP-induced Parkinson’s disease (PD) mouse model. NKT restored MPTP-induced motor impairment and dopaminergic neuronal loss and increased the expression of neurotrophic factors like BDNF, [...] Read more.
This study aims to investigate the neuroprotective effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in an MPTP-induced Parkinson’s disease (PD) mouse model. NKT restored MPTP-induced motor impairment and dopaminergic neuronal loss and increased the expression of neurotrophic factors like BDNF, GDNF, and PGC-1α. In addition, NKT inhibited microglial and astrocyte activation and the expression of pro-inflammatory markers like iNOS, TNF-α, and IL-1β and oxidative stress markers like 4-HNE and 8-OHdG. NKT increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-driven antioxidant enzymes like HO-1 and NQO-1 in astrocytes, but not in neurons or microglia in MPTP-treated mice. To investigate whether Nrf2 mediates the anti-inflammatory, antioxidant, or neuroprotective effects of NKT, mice were pretreated with Nrf2-specific inhibitor brusatol (BT) prior to NKT treatment. BT attenuated the NKT-mediated inhibition of 4-HNE and 8-OHdG and the number of Nrf2+/HO-1+/NQO1+ cells co-localized with GFAP+ astrocytes in the substantia nigra of MPTP-treated mice. In addition, BT reversed the effects of NKT on dopaminergic neuronal cell death, neurotrophic factors, and pro-/anti-inflammatory cytokines in MPTP-treated mice. Collectively, these data suggest that astrocytic Nrf2 and its downstream antioxidant molecules play pivotal roles in mediating the neuroprotective and anti-inflammatory effects of NKT in an MPTP-induced PD mouse model. Full article
(This article belongs to the Special Issue Oxidative Stress and Nrf2 in Neuroprotection)
Show Figures

Figure 1

18 pages, 2517 KB  
Article
Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2
by Jozaa Z. ALTamimi, Nora A. AlFaris, Ghedeir M. Alshammari, Reham I. Alagal, Dalal H. Aljabryn and Mohammed Abdo Yahya
Medicina 2023, 59(10), 1830; https://doi.org/10.3390/medicina59101830 - 14 Oct 2023
Cited by 9 | Viewed by 2965
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and [...] Read more.
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

13 pages, 3624 KB  
Article
Natural Compounds, Optimal Combination of Brusatol and Polydatin Promote Anti-Tumor Effect in Breast Cancer by Targeting Nrf2 Signaling Pathway
by Jing Li, Jianchao Zhang, Yan Zhu, Lukman O. Afolabi, Liang Chen and Xuesong Feng
Int. J. Mol. Sci. 2023, 24(9), 8265; https://doi.org/10.3390/ijms24098265 - 5 May 2023
Cited by 21 | Viewed by 3790
Abstract
Triple-negative breast cancer (TNBC) has been clearly recognized as a heterogeneous tumor with the worst prognosis among the subtypes of breast cancer (BC). The advent and application of current small-molecule drugs for treating TNBC, as well as other novel inhibitors, among others, have [...] Read more.
Triple-negative breast cancer (TNBC) has been clearly recognized as a heterogeneous tumor with the worst prognosis among the subtypes of breast cancer (BC). The advent and application of current small-molecule drugs for treating TNBC, as well as other novel inhibitors, among others, have made treatment options for TNBC more selective. However, there are still problems, such as poor patient tolerance, large administration doses, high dosing frequency, and toxic side effects, necessitating the development of more efficient and less toxic treatment strategies. High expression of Nrf2, a vital antioxidant transcription factor, often promotes tumor progression, and it is also one of the most effective targets in BC therapy. We found that in MDA-MB-231 cells and SUM159 cells, brusatol (BRU) combined with polydatin (PD) could significantly inhibit cell proliferation in vitro, significantly downregulate the expression of Nrf2 protein as well as the expression of downstream related target genes Heme Oxygenase-1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1), and promote reactive oxygen species (ROS) levels to further strengthen the anti-tumor effect. Furthermore, we discovered in our in vivo experiments that by reducing the drug dosage three times, we could significantly reduce tumor cell growth while avoiding toxic side effects, providing a treatment method with greater clinical application value for TNBC treatment. Full article
(This article belongs to the Special Issue NRF2 in Chronic Diseases Underlying the Oxidative Stress as a Trigger)
Show Figures

Figure 1

17 pages, 5426 KB  
Article
Targeting NRF2 Sensitizes Esophageal Adenocarcinoma Cells to Cisplatin through Induction of Ferroptosis and Apoptosis
by Farah Ballout, Heng Lu, Zheng Chen, Tianling Hu, Lei Chen, Mary Kay Washington, Wael El-Rifai and Dunfa Peng
Antioxidants 2022, 11(10), 1859; https://doi.org/10.3390/antiox11101859 - 21 Sep 2022
Cited by 23 | Viewed by 4112
Abstract
Esophageal adenocarcinoma (EAC), the predominant type of esophageal cancer in the United States, develops through Barrett’s esophagus (BE)-dysplasia-carcinoma cascade. Gastroesophageal reflux disease, where acidic bile salts refluxate into the esophagus, is the main risk factor for the development of BE and its progression [...] Read more.
Esophageal adenocarcinoma (EAC), the predominant type of esophageal cancer in the United States, develops through Barrett’s esophagus (BE)-dysplasia-carcinoma cascade. Gastroesophageal reflux disease, where acidic bile salts refluxate into the esophagus, is the main risk factor for the development of BE and its progression to EAC. The NFE2-related factor 2 (NRF2) is the master cellular antioxidant regulator. We detected high NRF2 protein levels in the EAC cell lines and primary tissues. Knockdown of NRF2 significantly enhanced acidic bile salt-induced oxidative stress, DNA damage, and inhibited EAC cell growth. Brusatol, an NRF2 inhibitor, significantly inhibited NRF2 transcriptional activity and downregulated the NRF2 target genes. We discovered that in addition to inducing apoptosis, Brusatol alone or in combination with cisplatin (CDDP) induced significant lipid peroxidation and ferroptosis, as evidenced by reduced xCT and GPX4 expression, two known ferroptosis markers. The combination of Brusatol and CDDP significantly inhibited EAC tumor xenograft growth in vivo and confirmed the in vitro data showing ferroptosis as an important mechanism in the tumors treated with Brusatol or Brusatol and CDDP combination. Our data support the role of NRF2 in protecting against stress-induced apoptosis and ferroptosis in EACs. Targeting NRF2 in combination with platinum therapy can be an effective strategy for eliminating cancer cells in EAC. Full article
(This article belongs to the Special Issue Redox Homeostasis and Diseases Related to Iron Metabolism)
Show Figures

Graphical abstract

14 pages, 2651 KB  
Article
Antitumor Effect of Brusatol in Acute Lymphoblastic Leukemia Models Is Triggered by Reactive Oxygen Species Accumulation
by Joana Jorge, Nisa Magalhães, Raquel Alves, Beatriz Lapa, Ana Cristina Gonçalves and Ana Bela Sarmento-Ribeiro
Biomedicines 2022, 10(9), 2207; https://doi.org/10.3390/biomedicines10092207 - 6 Sep 2022
Cited by 9 | Viewed by 2892
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies at pediatric ages and is characterized by different chromosomal rearrangements and genetic abnormalities involved in the differentiation and proliferation of lymphoid precursor cells. Brusatol is a quassinoid plant extract extensively studied [...] Read more.
Acute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies at pediatric ages and is characterized by different chromosomal rearrangements and genetic abnormalities involved in the differentiation and proliferation of lymphoid precursor cells. Brusatol is a quassinoid plant extract extensively studied due to its antineoplastic effect through global protein synthesis and nuclear factor erythroid 2-related factor-2 (NRF2) signaling inhibition. NRF2 is the main regulator of cellular antioxidant response and reactive oxygen species (ROS), which plays an important role in oxidative stress regulation. This study aimed to evaluate the effect of brusatol in in vitro models of ALL. KOPN-8 (B-ALL), CEM (T-ALL), and MOLT-4 (T-ALL) cell lines were incubated with increasing concentrations of brusatol, and the metabolic activity was evaluated using the resazurin assay. Flow cytometry was used to evaluate cell death, cell cycle, mitochondrial membrane potential (Δψmit), and to measure ROS and reduced glutathione (GSH) levels. Our results show that brusatol promoted a decrease in metabolic activity in ALL cell lines in a time-, dose-, and cell-line-dependent manner. Brusatol induced a cytostatic effect by cell cycle arrest in G0/G1 in all cell lines; however, cell death mediated by apoptosis was only observed in T-ALL cells. Brusatol leads to an oxidative stress imbalance by the increase in ROS levels, namely, superoxide anion. Redox imbalance and cellular apoptosis induced by brusatol are highly modulated by mitochondria disruption as a decrease in mitochondrial membrane potential is detected. These data suggest that brusatol might represent a new therapeutic approach for acute lymphoblastic leukemia, particularly for ALL T-cell lineage. Full article
(This article belongs to the Special Issue Recent Advances in Myelodysplastic/Myeloproliferative Neoplasms)
Show Figures

Figure 1

50 pages, 4475 KB  
Review
Indigenous Uses, Phytochemical Analysis, and Anti-Inflammatory Properties of Australian Tropical Medicinal Plants
by Karma Yeshi, Gerry Turpin, Tenzin Jamtsho and Phurpa Wangchuk
Molecules 2022, 27(12), 3849; https://doi.org/10.3390/molecules27123849 - 15 Jun 2022
Cited by 36 | Viewed by 12640
Abstract
Australian tropical plants have been a rich source of food (bush food) and medicine to the first Australians (Aboriginal people), who are believed to have lived for more than 50,000 years. Plants such as spreading sneezeweed (Centipeda minima), goat’s foot ( [...] Read more.
Australian tropical plants have been a rich source of food (bush food) and medicine to the first Australians (Aboriginal people), who are believed to have lived for more than 50,000 years. Plants such as spreading sneezeweed (Centipeda minima), goat’s foot (Ipomoea pes-caprae), and hop bush (Dodonaea viscosa and D. polyandra) are a few popular Aboriginal medicinal plants. Thus far, more than 900 medicinal plants have been recorded in the tropical region alone, and many of them are associated with diverse ethnomedicinal uses that belong to the traditional owners of Aboriginal people. In our effort to find anti-inflammatory lead compounds in collaboration with Aboriginal communities from their medicinal plants, we reviewed 78 medicinal plants used against various inflammation and inflammatory-related conditions by Aboriginal people. Out of those 78 species, we have included only 45 species whose crude extracts or isolated pure compounds showed anti-inflammatory properties. Upon investigating compounds isolated from 40 species (for five species, only crude extracts were studied), 83 compounds were associated with various anti-inflammatory properties. Alphitolic acid, Betulinic acid, Malabaric acid, and Hispidulin reduced proinflammatory cytokines and cyclooxygenase enzymes (COX-1 and 2) with IC50 values ranging from 11.5 to 46.9 uM. Other promising anti-inflammatory compounds are Brevilin A (from Centipeda minima), Eupalestin, and 5′-methoxy nobiletin (from Ageratum conyzoides), Calophyllolide (from Calophyllum inophyllum), and Brusatol (from Brucea javanica). D. polyandra is one example of an Aboriginal medicinal plant from which a novel anti-inflammatory benzoyl ester clerodane diterpenoid compound was obtained (compound name not disclosed), and it is in the development of topical medicines for inflammatory skin diseases. Medicinal plants in the tropics and those associated with indigenous knowledge of Aboriginal people could be a potential alternative source of novel anti-inflammatory therapeutics. Full article
(This article belongs to the Special Issue Bioactive Molecules and Drug Lead Compounds)
Show Figures

Graphical abstract

Back to TopTop